PUBLIC DRAFT

LOS OSOS BASIN PLAN GROUNDWATER MONITORING PROGRAM 2023 ANNUAL MONITORING REPORT

Prepared for the

BASIN MANAGEMENT COMMITTEE

MAY 2024

CLEATH-HARRIS GEOLOGISTS 75 Zaca Lane, Suite 110 San Luis Obispo, California 93401

TABLE OF CONTENTS

SE	<u>CTIO</u>	<u>N</u>	<u>P</u>	<u>AGE</u>
EX	ECU	TIV	E SUMMARY	1
1.		INT	TRODUCTION	7
2.		BA	CKGROUND	8
,	2.1	Gro	oundwater Monitoring History	8
,	2.2	LO	BP Groundwater Monitoring Program Design	8
	2.2	.1	Water Level Monitoring	. 10
	2.2	.2	Groundwater Quality Monitoring	. 16
	2.2	.3	Monitoring Frequency	. 18
	2.2	.4	SGMA Activities	. 19
	2.2	.5	Additional Basin Studies	. 19
3.		CO	NDUCT OF WORK	. 21
	3.1	Ser	vices Provided	. 21
	3.2	Fiel	ld Methods	. 21
	3.2	.1	Elevation Datum	. 21
	3.2	.2	Water Level Monitoring Procedures	. 21
	3.2	.3	Groundwater Sampling Procedures	. 22
	3.3	Mo	nitoring Staff Affiliations	. 22
4.		MO	ONITORING RESULTS	. 22
4	4.1	Wat	ter Level Monitoring Results	. 23
4	4.2	Wat	ter Quality Results	. 30
	4.2	.1	Nitrate and Chloride Results	. 30
	4.2	.2	CEC Results	. 30
4	4.3	Geo	ophysics	. 36
5.		GR	OUNDWATER PRODUCTION	. 37
6.		PRI	ECIPITATION AND STREAMFLOW	. 42
7.		DA	TA INTERPRETATION	. 45
,	7.1	Wat	ter Level Contour Maps	. 45
,	7.2	Wat	ter Level Hydrographs	. 52
,	7.3	Sea	water Intrusion	. 57

7.4 G 1	roundwater in Storage	62
7.5 Ba	asin Metrics	68
7.5.1	Basin Yield Metric	68
7.5.2	Basin Development Metric	71
7.5.3	Water Level, Chloride, and Nitrate Metrics	72
7.5.4	Upper Aquifer Water Level Profile	79
8. B.	ASIN STATUS	83
9. R	ECOMMENDATIONS	84
	TATUS OF BASIN METRICS, BMC INITIATIVES AND LOBP PROGRAM	
IMPLEME	NTATION	85
10.1	Basin Metrics	85
10.2	Update on BMC Initiatives	86
10.3	LOBP Programs	88
10.3.1	Groundwater Monitoring Program	89
10.3.2	Urban Water Use Efficiency Program	89
10.3.3	Urban Water Reinvestment Program	90
10.3.4	Basin Infrastructure Programs	92
10.3.5	Wellhead Protection Program	92
11 R1	FEERENCES	96

List of Tables

- Table ES-1 Groundwater Production
- Table ES-2 LOBP Metric Summary
- Table ES-3 Basin Infrastructure Projects
- Table 1 Water Quality Monitoring Constituents
- Table 2 CEC Monitoring Constituents
- Table 3 Spring 2023 Water Levels First Water
- Table 4 Spring 2023 Water Levels Upper Aquifer
- Table 5 Spring 2023 Water Levels Lower Aquifer
- Table 6 Fall 2023 Water Levels First Water
- Table 7 Fall 2023 Water Levels Upper Aquifer
- Table 8 Fall 2023 Water Levels Lower Aquifer
- Table 9 Fall 2023 Water Quality Results First Water and Upper Aquifer
- Table 10 Spring 2023 Water Quality Results Lower Aquifer
- Table 11 Fall 2023 Water Quality Results Lower Aquifer
- Table 12 CEC Monitoring Results
- Table 13 Municipal Groundwater Production (2013-2023)
- Table 14 Estimated Basin Groundwater Production (2013-2023)
- Table 15 Active and Former Precipitation Stations
- Table 16 Maximum Stream Stage for Los Osos Creek, 2023 Water Year
- Table 17 Estimated Specific Yield Values
- Table 18 Groundwater in Storage Spring and Fall 2023 (<250 mg/L Chloride)
- Table 19 Change in Storage Spring 2022 to Spring 2023 (<250 mg/L Chloride)
- Table 20 Groundwater in Storage above Sea Level (2018-2023)
- Table 21 2023 Water Level Metric
- Table 22 2023 Chloride Metric
- Table 23 2023 Nitrate Metric
- Table 24 LOBP Metric Summary
- Table 25 Basin Groundwater Monitoring Program Status
- Table 26 Planned Recycled Water Uses in the Urban Water Reinvestment Program
- Table 27 Basin Infrastructure Projects

List of Figures

- Figure 1 Basin Location and Plan Areas
- Figure 2 Groundwater Monitoring Program First Water Wells
- Figure 3 Groundwater Monitoring Program Upper Aquifer Wells
- Figure 4 Groundwater Monitoring Program Lower Aquifer Wells
- Figure 5 Basin Aquifers
- Figure 6 Basin Production (1971-2023) Basin Total and Western Area
- Figure 7 Basin Production (1971-2023) Central and Eastern Areas
- Figure 8 Cumulative Departure from Mean Rainfall at Morro Bay Fire Department
- Figure 9 Spring 2023 Water Level Contours Perched Aquifer
- Figure 10 Spring 2023 Water Level Contours Upper Aquifer and Alluvial Aquifer
- Figure 11 Spring 2023 Water Level Contours Lower Aquifer
- Figure 12 Fall 2023 Water Level Contours Perched Aquifer
- Figure 13 Fall 2023 Water Level Contours Upper Aquifer and Alluvial Aquifer
- Figure 14 Fall 2023 Water Level Contours Lower Aquifer
- Figure 15 Water Level Hydrographs Perched Aquifer / First Water
- Figure 16 Water Level Hydrographs Upper Aquifer
- Figure 17 Water Level Hydrographs Lower Aquifer
- Figure 18 Seawater Intrusion Front Western Area Lower Aquifer Zone D
- Figure 19 Seawater Intrusion Front Cross-section B-B'
- Figure 20 Seawater Intrusion Front Cross-section E-E'
- Figure 21 Basin Storage Compartments
- Figure 22 Basin Yield Metric Comparison
- Figure 23 Chloride and Water Level Metric
- Figure 24 Nitrate Metric
- Figure 25 Upper Aquifer Water Level Profile Orientation
- Figure 26 Upper Aquifer Water Level Profile

List of Appendices

- Appendix A Groundwater Monitoring History
- Appendix B Los Osos Basin Plan Groundwater Monitoring Program Well Information
- Appendix C Field Logs and Laboratory Analytical Reports for 2023 BMC Monitoring
- Appendix D Field Methods
- Appendix E Land Use and Water Use Areas
- Appendix F 2023 Agricultural and Community Turf Water Use Estimates
- Appendix G Precipitation and Streamflow Data
- Appendix H Transducer Hydrographs
- Appendix I Historical Water Quality (Lower Aquifer)
- Appendix J Groundwater Storage Calculation Example
- Appendix K Construction of the new Skyline Monitoring Wells

Acronyms used in this Annual Report

BBMR Basin Boundary Modification Request

BMC Basin Management Committee

CASGEM California Statewide Groundwater Elevation Monitoring CCRWQCB Central Coast Regional Water Quality Control Board

CEC Constituents of Emerging Concern

CHG Cleath-Harris Geologists
DEET Diethyl-meta-tolumide

DWR Department of Water Resources EFH Equivalent Freshwater Head

FW First Water

GSWC Golden State Water Company
ISJ Interlocutory Stipulated Judgement

LA Lower Aquifer
LOBP Los Osos Basin Plan
LOCP Los Osos Community Plan

LOCSD Los Osos Community Services District
LOHCP Los Osos Habitat Conservation Plan
LOWRF Los Osos Water Recycling Facility
NAVD 88 North American Vertical Datum of 1988

NDMA N-Nitrosodimethylamine

NDMC National Drought Mitigation Center

NGVD 29 National Geodetic Vertical Datum of 1929

NOAA National Oceanic and Atmospheric Administration

S&T Mutual Water Company

SGMA Sustainable Groundwater Management Act

SNMP Salt and Nutrient Management Plan SWRCB State Water Resource Control Board

TDS Total Dissolved Solids

UA Upper Aquifer

USDA United States Department of Agriculture

EXECUTIVE SUMMARY

The Los Osos Basin Plan Groundwater Monitoring Program – 2023 Annual Report (Annual Report) describes activities related to the Los Osos Basin Plan (LOBP) Groundwater Monitoring Program and provides results and interpretation of these activities for calendar year 2023. The LOBP Groundwater Monitoring Program is necessary to accomplish the following continuing goals set forth in Section 2.4 of the LOBP (ISJ Group, 2015):

- 1. Provide for a continuously updated hydrologic assessment of the Los Osos Groundwater Basin (Basin), its water resources and Sustainable Yield.
- 2. Create a water resource accounting which is able to meet the information needs for planning, monitoring, trading, environmental management, utility operations, land development and agricultural operations.

The LOBP Groundwater Monitoring Program is also necessary to support other goals of the LOBP, including halting or reversing seawater intrusion, establishing a long-term environmentally and economically sustainable and beneficial use of the Basin, and the equitable allocation of costs associated with Basin management.

Groundwater Production

Groundwater production for calendar year 2023 is summarized in Table ES-1 below. Reported Purveyor (Los Osos Community Services District, Golden State Water Company, and S&T Mutual Water Company) production has decreased by three percent compared to 2022, while total Basin production is estimated to have decreased by 18 percent compared to 2022.

Table ES-1. Groundwater Production					
Description	2023 Production in Acre-Feet	2022 Production in Acre-Feet			
Los Osos Community Services District	487	496			
Golden State Water Company	470	491			
S&T Mutual Water Company	27	29			
Purveyor Subtotal (metered)	984	1,016			
Domestic wells ¹	110	220			
Community facilities ¹	60	90			
Agricultural wells ¹	500	680			
Total Estimated Production ¹	1,650	2,010			

¹ Rounded to the nearest 10 acre-feet. Production from non-metered wells (Domestic, Community, Agricultural) estimated per methods described in Appendix F and LOBP Section 4 and Section 7.5.

Basin Status

The status of the Basin in terms of key parameters and metrics are listed below, along with the page reference for definitions and additional details on each key parameter:

Precipitation (p. 42). The Basin received above average rainfall in 2023. The drought condition for San Luis Obispo County ranged from extreme drought in January 2023 to no drought conditions by year-end 2023 (NDMC/USDA/NOAA, 2023).

Seawater Intrusion Front (p. 57). The seawater intrusion front in Zone D stabilized between Fall 2022 and Fall 2023. This interpretation is based on localized conditions contoured to represent regional trends. The seawater intrusion front in Zone E advanced inland through LA11 between Fall 2022 and Fall 2023 (a deterioration).

Basin Yield Metric (p. 68). The Basin Yield Metric decreased between 2022 and 2023 (an improvement) and meets the LOBP goal in 2023.

Water Level Metric (p. 72). The Water Level Metric increased between Spring 2022 and Spring 2023 (an improvement) and has not reached the target value.

Chloride Metric (p. 75). The Chloride Metric increased between Fall 2022 and Fall 2023 (a deterioration) and has not reached the target value.

Nitrate Metric (p. 76). The Nitrate Metric decreased between Winter 2022 and Winter 2023 (an improvement) and has not reached the target value.

Upper Aquifer Water Level Profile (p. 79). Water levels in the Upper Aquifer along the bay remain safely above the Protective Elevation, except for near well UA5, where chloride concentrations have stabilized at relatively low concentrations.

Recommendations for improving the quality and availability of data are contained in Section 9 of the Annual Report. Recommendations from the 2022 Annual Report that were completed in 2023 include developing a rating curve for the Los Osos Creek stream gage, continued water quality monitoring at UA5, and installation of a Lower Aquifer monitoring well cluster at the east end of Skyline Avenue. Recommendations from 2022 that are on-hold, in progress, or planned for 2024 include re-evaluating the Water Level, Chloride, and Nitrate Metrics (on-hold), developing a transient Basin model (in progress), locating and salvaging well FW7 at the Broderson site (planned), and updating the Maximum Sustainable Yield (planned).

LOBP Metrics

As described in Section 7.5 ("Basin Metrics") of this Annual Report, the LOBP established several Basin metrics to evaluate nitrate impacts to the Upper Aquifer, seawater intrusion into the Lower Aquifer, and the effect of management efforts of the Basin Management Committee (BMC). These metrics allow the BMC, regulatory agencies, and the public to evaluate the status of nitrate levels and seawater intrusion, and the impact of implementation of the LOBP programs in the Basin through objective, numerical criteria that can be tracked over time. The status of key Basin metrics is summarized in Table ES-2.

Table ES-2. LOBP Metric Summary							
Metric ¹	LOBP Goal	Calculated Value from 2023 Data	Change in Condition from 2022				
Basin Yield Metric	80 or less	69	Decrease from 84 (improvement)				
Water Level Metric	8 feet above mean sea level or higher	4.3 feet above mean sea level	Increase from 2.5 ft. (improvement)				
Chloride Metric	100 mg/L or lower	199 mg/L	Increase from 184 mg/L (deterioration)				
Nitrate Metric	10 mg/L or lower	14.2 mg/L (NO ₃ -N)	Decrease from 17.5 mg/L (improvement)				

¹Revisions to the Water Level, Chloride, and Nitrate Metrics were initiated in 2021 and are currently on hold as the BMC continues to improve the Basin Monitoring Network through the addition of new monitoring wells and rehabilitation of existing wells.

Approval of the Annual Monitoring Report by the BMC does not constitute unanimous approval of actions listed under Section 5.11.4 (Approval Requirements) of the Stipulated Judgment or setting the Sustainable Yield for a given year. These actions require a separate action and unanimous approval by the BMC.

Adaptive Management

In addition to the programs described in the LOBP, the following additional initiatives were under evaluation or completed by the BMC in 2023 through adaptive management. Details regarding the status of each program listed below are provided in Section 10 of this Annual Report.

- Lower Aquifer Monitoring Improvements
- Updated Metric Evaluation
- Program C Adaptive Management
- Lower Aquifer Nitrate Investigation
- Los Osos Basin Well Database
- Evaluation of Water Conservation Measures
- WRFP/Transient Groundwater Model
- Discussion and Recommendation of Criteria for Future Growth

LOBP Infrastructure Programs

The status of LOBP infrastructure programs is summarized Table ES- 3.

•	Table ES-3. Basin Infrastructure Projects						
Project Name	Parties Involved	Funding Status	Capital Cost	Status			
		Prograi	m A				
Water Systems Interconnection	LOCSD/ GSWC			Completed			
Upper Aquifer Well (8 th Street)	LOCSD			Completed			
South Bay Well Nitrate Removal	LOCSD			Completed			
Palisades Well Modifications	LOCSD			Completed			
Blending Project (Skyline Well)	GSWC			Completed			
Water Meters	S&T			Completed			
		Prograi	m B				
LOCSD Wells	LOCSD	Not Funded	BMP: \$2.7 mil	Project not initiated			
GSWC Wells	GSWC	Not Funded	BMP: \$3.2 mil	Project not initiated			
Community Nitrate Removal Facility	LOCSD/GSWC/S&T	GSWC Portion Funded	GSWC: \$1.23 mil	GSWC's Program A Blending Project might be capable of expanding to be the first phase of the Program B Community Nitrate Removal Facility.			

Project Name	Parties Involved	Funding Status	Capital Cost	Status
		Prog	gram C	
Expansion Well No. 1 (Los Olivos)	GSWC			Completed
Expansion Well No. 2	LOCSD	LOCSD	LOCSD Cost Estimate: \$3.1 mil	The well construction and transmission main are complete. Completion of all phases of the project is estimated to occur in December 2024.
Expansion Well 3 and LOVR Water Main Upgrade	GSWC/LOCSD	Cooperative Funding	BMP: \$1.6 mil	The deferral from Program C for this project was removed by the BMC on August 16 th , 2023.
LOVR Water Main Upgrade	GSWC	May be deferred	BMP: \$1.53 mil	Project may not be required, depending on the pumping capacity of the drilled Program C wells. It may be deferred to Program D.
S&T/GSWC Interconnection	S&T/ GSWC	Pending	BMP: \$30,000	Currently on hold pending further evaluation of the project.

Project Name	Parties Involved	Funding Status	Capital Cost	Status				
	Program M							
New Zone D/E Lower Aquifer monitoring well in Cuesta by the Sea	All Parties			Completed				
		Progr	ram U					
Creek Discharge Program	All Parties		TBD	These activities are currently on hold. The Transient Model and Water Recycling Funding Study are intended to better inform the BMC on the most effective opportunities for increasing the sustainable yield of the Basin.				
8 th and El Moro Urban Storm Water Recovery Project	All Parties		TBD	These activities are currently on hold. The Transient Model and Water Recycling Funding Study are intended to better inform the BMC on the most effective opportunities for increasing the sustainable yield of the Basin.				

1. INTRODUCTION

The Los Osos Groundwater Basin (the Basin) was adjudicated in October 2015 (*Los Osos Community Services District v. Southern California Water Company [Golden State Water Company] et al.* (San Luis Obispo County Superior Court Case No. CV 040126) and is managed by the Los Osos Groundwater Basin Management Committee (BMC), consisting of representatives from Los Osos Community Services District (LOCSD), Golden State Water Company (GSWC), S&T Mutual Water Company (S&T), and the County of San Luis Obispo (County). This is the ninth Annual Report for the Basin.

The 2023 Annual Report (Annual Report) describes Basin activities related to the Los Osos Basin Plan (LOBP) Groundwater Monitoring Program and provides results and interpretation of these activities. The LOBP Groundwater Monitoring Program is necessary to accomplish the following continuing goals set forth in Section 2.4 of the LOBP (ISJ Group, 2015):

- 1. Provide for a continuously updated hydrologic assessment of the Basin, its water resources and sustainable yield.
- 2. Create a water resource accounting which is able to meet the information needs for planning, monitoring, trading, environmental management, utility operations, land development and agricultural operations.

The LOBP Groundwater Monitoring Program is also necessary to support other LOBP goals, including halting or reversing seawater intrusion, establishing a long-term environmentally and economically sustainable and beneficial use of the Basin, and the equitable allocation of costs associated with Basin management (ISJ Group, 2015). The program will provide significant overlap with several regulatory requirements, including:

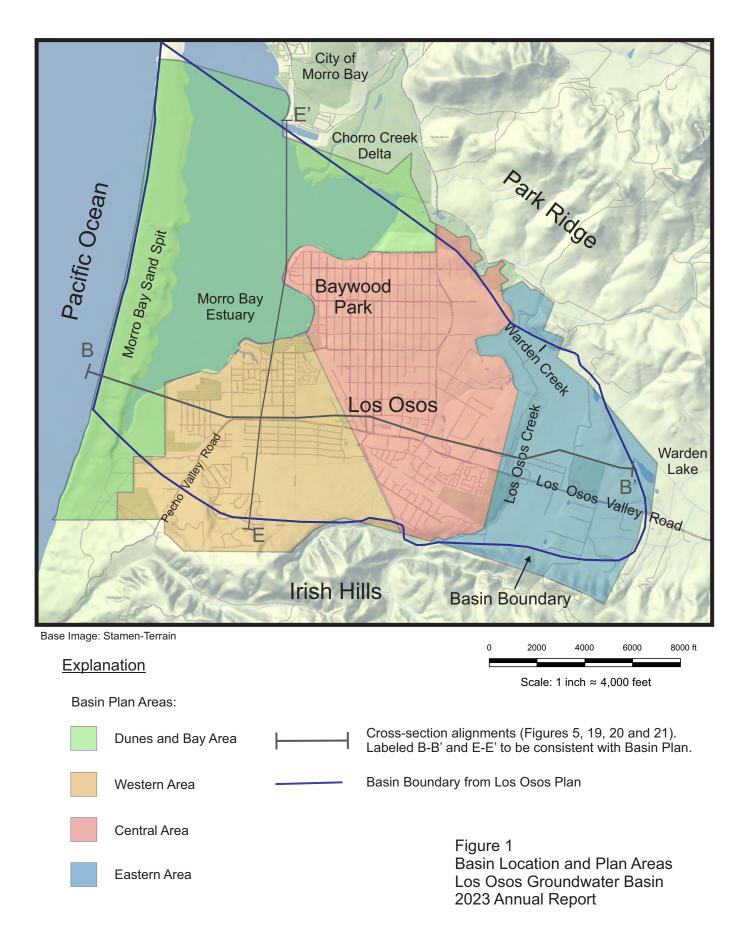
- The Sustainable Groundwater Management Act (SGMA)
- California Statewide Groundwater Elevation Monitoring (CASGEM) Program
- State Water Resource Control Board's (SWRCB) salt and nutrient monitoring guidelines as adopted in the state Recycled Water Policy. The County Board of Supervisors adopted the Salt and Nutrient Management Plan (SNMP) for the Los Osos Groundwater Basin on January 23, 2018. The SNMP has been reviewed by the Regional Water Quality Control Board.
- Recycled Water Management Plan requirements for the Los Osos Water Recycling Facility (LOWRF)

This report was prepared by Cleath-Harris Geologists (CHG). Confluence Engineering Solutions (ConfluenceES) contributed to the Executive Summary and Section 10.

2. BACKGROUND

In August 2008, the Superior Court of the State of California for the County of San Luis Obispo (Court) approved an Interlocutory Stipulated Judgment (ISJ) between LOCSD, GSWC, S&T, and the County. Under the ISJ, these Parties formed a working group, undertaking technical studies and management discussions that produced the LOBP in January 2015. The LOBP presents a comprehensive groundwater management strategy and serves as the cornerstone of a physical solution to address the significant problems facing the Basin, including seawater intrusion and elevated nitrate concentrations, and for restoration of Basin water resources, while respecting existing water rights. The LOBP Groundwater Monitoring Program is a key component of the LOBP, providing water level and water quality data that serve as measures of effectiveness for LOBP programs and activities with respect to the restoration of Basin water resources. A Stipulated Judgment was approved by the Court on October 14, 2015 and covers the plan areas shown in Figure 1.

In 2019, the Department of Water Resources (DWR) separated the Los Osos Valley groundwater basin (Bulletin 118 basin 3-08) into two jurisdictional subbasins, the Los Osos Area Subbasin and the Warden Creek Subbasin (DWR, 2019). The Los Osos Area Subbasin lies within the LOBP plan area and overlaps with the LOBP Basin but does not replace or update the scientific boundary defined in the 2015 Basin adjudication (see Section 2.2.4 for details). A figure showing the DWR Los Osos Subbasin boundary and the LOBP Basin boundary is included in Appendix A.


2.1 Groundwater Monitoring History

Groundwater monitoring has been performed by public agencies, water purveyors, and consultants for various Basin studies and programs over several decades. A list of historical investigations, monitoring reports, and monitoring programs with a major focus on Basin water levels and water quality through 2023 is included in Appendix A.

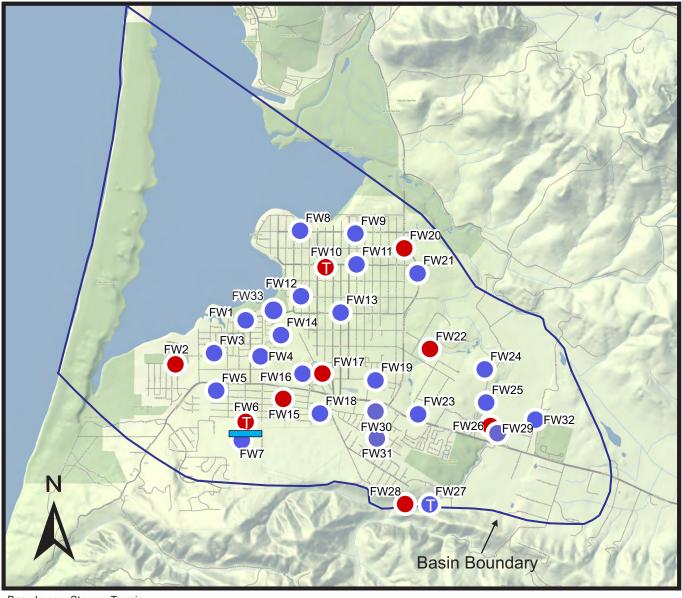
2.2 LOBP Groundwater Monitoring Program Design

The purpose of the LOBP Groundwater Monitoring Program is to collect and organize groundwater data on a regular basis for use in management of the Basin. Design of the LOBP Groundwater Monitoring Program is detailed in Section 7 of the LOBP. The basic elements of the program are as follows:

 Monitor long-term groundwater level trends in a network of wells for three monitoring groups within the Basin: First Water (FW), Upper Aquifer (UA), and Lower Aquifer (LA).
 These terms are defined in Section 2.2.1 below. The abbreviations are only used for network well numbering purposes (e.g. Lower Aquifer well 43 is LA43).

Cleath-Harris Geologists

- Monitor seasonal fluctuations and long-term water quality trends at selected wells in each of the three monitoring groups.
- Compare hydrologic data pertinent to Basin management, including groundwater production from the two principal water supply aquifers (Upper Aquifer and Lower Aquifer), wastewater disposal and recycled water use, local precipitation data and County stream gage records for Los Osos Creek.
- Collect data sufficient to evaluate the effectiveness of Basin management strategies adopted in the LOBP via established metrics.


There are currently 93 wells included in the 2023 LOBP Groundwater Monitoring Program, including 43 BMC member agency monitoring wells, 17 municipal wells (active and inactive) and 33 private wells (Appendix B). Private well participation in the monitoring program during 2023 was approximately 67 percent (23 out of 33 wells in Spring, 22 out of 33 in the Fall). "Private" wells refer to domestic wells, agricultural irrigation wells, and monitoring wells that are not controlled by BMC member agencies. Two new Lower Aquifer monitoring wells completed in December 2023 will be added to the monitoring program in 2024 (see Section 7.5.3).

Existing groundwater monitoring wells were selected to achieve, to the degree possible, horizontal, and vertical coverage throughout the Basin. The LOBP Groundwater Monitoring Program coverage within the Basin is shown in Figures 2, 3, and 4. Correlation between LOBP Groundwater Monitoring Program well numbers and state well numbers, along with well construction information and monitoring tasks are included in Appendix B.

Despite the relatively high density of available monitoring locations in the Basin, only a few of the wells are dedicated to monitoring Lower Aquifer Zone E, which is the deepest aquifer in the Basin and the most susceptible to seawater intrusion. Over half of the 93 wells in the monitoring network as of 2023 are water supply wells, which are not specifically designed for groundwater monitoring, and may include mixed aquifer zone completions and wellbore leakage. There is a need for additional monitoring locations in the Lower Aquifer (see Section 2.2.5).

2.2.1 Water Level Monitoring

Water level monitoring is a fundamental tool for characterizing Basin hydrology and is performed at LOBP Groundwater Monitoring Program locations. Groundwater elevations in wells are measures of hydraulic head in an aquifer. Groundwater moves in the direction of decreasing head, and groundwater elevation contours can be used to show the general direction and hydraulic gradient associated with groundwater movement. Changes in the amount of groundwater in storage within an aquifer can also be estimated based on changes in hydraulic head, along with other parameters. Fourteen of the monitoring network wells have been equipped with transducers as of 2023, to provide an efficient and high level of resolution for tracking dynamic changes in Basin groundwater levels (see Section 7.2).

Base Image: Stamen-Terrain

Explanation

LOBP Water Level Monitoring Well

Water Level Transducer

Water Level and Water Quality Monitoring Well

Water Level Transducer and Water Quality Monitoring Well

Broderson Leach Field

Note: First Water wells refers to wells screened within the first 50 feet of saturated sediments across the basin, regardless of the aquifer.

Figure 2 Groundwater Monitoring Program First Water Wells Los Osos Groundwater Basin 2023 Annual Report

Cleath-Harris Geologists

2000

4000

Scale: 1 inch ≈ 4,000 feet

6000

8000 ft

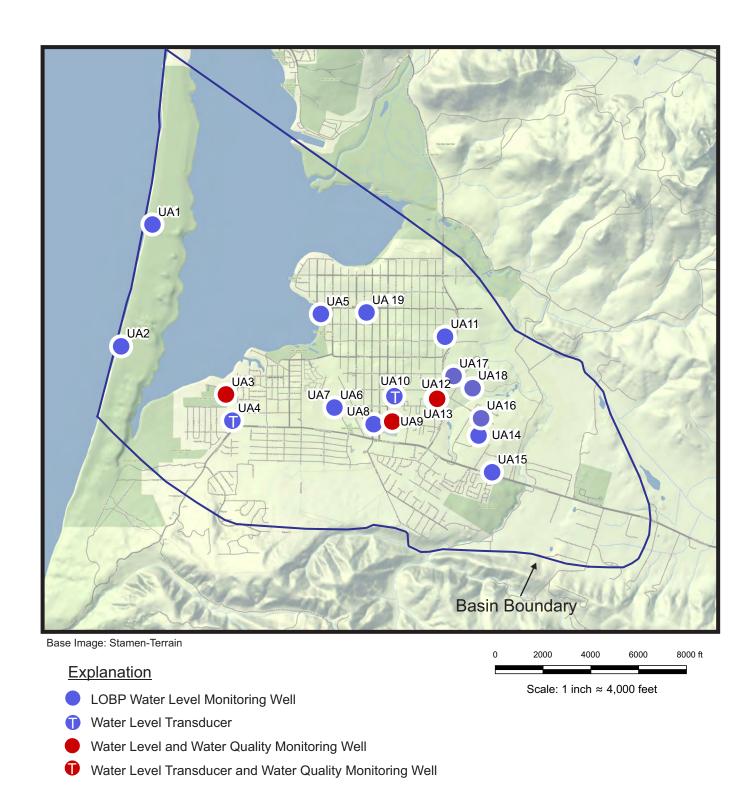
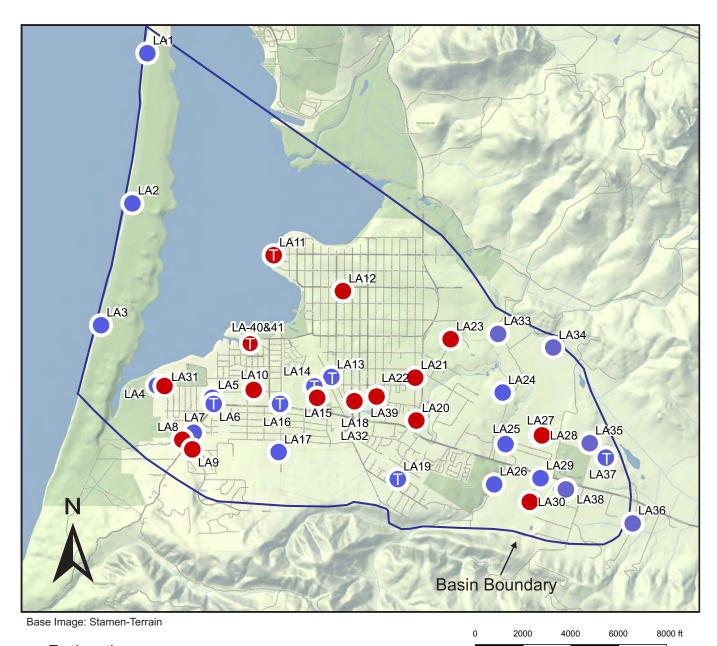



Figure 3 Groundwater Monitoring Program Upper Aquifer Wells Los Osos Groundwater Basin 2023 Annual Report

Cleath-Harris Geologists

Explanation

LOBP Water Level Monitoring Well

Water Level Transducer

Water Level and Water Quality Monitoring Well

Water Level Transducer and Water Quality Monitoring Well

Note: LA24 & FW24 and LA 40 & 41 are nested wells (same borehole).

LA18 and LA32 at same site (two symbols used in 2016 Annual Report figure to indicate LA32 was a program addition).

Figure 4
Groundwater Monitoring Program
Lower Aquifer Wells
Los Osos Groundwater Basin
2023 Annual Report

Scale: 1 inch ≈ 4,000 feet

Cleath-Harris Geologists

Of the 93 wells included in the currently in the 2023 LOBP Groundwater Monitoring Program, 33 are representative of First Water, 19 are representative of the Upper Aquifer, and 41 wells are representative of the Lower Aquifer. Spatially, five water level monitoring wells are located in the Dunes and Bay Area, 31 wells are located in the Western Area, 39 wells are located in the Central Area, and 20 wells are located in the Eastern Area. Two new Lower Aquifer monitoring wells were added in December of 2023, at the end of Skyline Drive. They will bring the well count up to 95 for the monitoring program in 2024.

First Water

The First Water group refers to wells screened within the first 50 feet of saturated sediments across the Basin, regardless of the aquifer (Figure 5). First Water is the interface where percolating waters, including precipitation and return flows from irrigation and wastewater, mix with Basin waters. This 50-foot thick interface occurs within unconfined sediments and generally rises and falls seasonally with water level fluctuations. Where First Water is close to ground surface, it also impacts drainage and is associated with flooding issues in low-lying areas. First Water extends across the Basin, and may be present in dune sands, Paso Robles Formation deposits, or Los Osos Creek alluvium (Figure 5). Selected First Water wells, including those in downtown Los Osos are used to represent the perched aquifer (Zones A and B), Zone C, and Alluvial Aquifer for water level contouring.

Upper Aquifer

The Upper Aquifer (Zone C) refers to the non-perched aquifer above the regional aquitard (Figure 5). As noted above, a portion of the Upper Aquifer may also be considered First Water in certain Basin areas. Historically, the Upper Aquifer was developed as the main water supply for the community and is still the main source of water for rural residential parcels. Beginning in the late 1970's, purveyor production from the Lower Aquifer became the main source of water for the community. A significant increase in Upper Aquifer production could be implemented under LOBP infrastructure Program B. Monitoring the Upper Aquifer in the urban area (properties contained within the Urban Reserve Line as shown in Figure 10 of the LOBP) is important to the Purveyors and rural residential parcels.

Lower Aquifer

The Lower Aquifer refers to water bearing sediments below the regional aquitard. There are both Paso Robles Formation and Careaga Formation deposits in the Lower Aquifer. The base of the Lower Aquifer is claystone and sandstone bedrock, although the effective base of fresh water lies above bedrock at the western edge of the Basin, due to the presence of seawater intrusion. There are two separate Lower Aquifer zones defined for Basin management and seawater intrusion mitigation. Zone D lies between the regional aquitard (AT2 clay) and a deeper aquitard (AT3 clay). Zone E is below the AT3 clay (Figure 5). Lower Aquifer Zone D is currently the main water supply source for the community. Seawater intrusion is a major concern for the Lower Aquifer. The seawater intrusion front corresponds to the position of the 250 mg/L chloride

Cross-section alignment shown in Figure 1

Explanation

Perched Aquifer Water level

Upper Aquifer Water level

Lower Aquifer Water level

Figure 5 Basin Aquifers Los Osos Groundwater Basin 2023 Annual Report

Cleath-Harris Geologists

concentration isopleth, which has been advancing inland for decades, and continues to advance under current Basin conditions, based on the monitoring program data. A significant reduction in Lower Aquifer production in the Western Area, together with other LOBP programs, is necessary to halt, slow and/or reverse intrusion.

2.2.2 Groundwater Quality Monitoring

Groundwater quality monitoring refers to the periodic collection and chemical or physical analysis of groundwater from wells. The analytical requirements are highly variable, depending on the purpose of monitoring. General minerals and nitrate are common water quality constituents of analysis for groundwater basin investigations. There are many other classes of water quality constituents of concern, however, such as volatile organic compounds, inorganic compounds (metals), petroleum hydrocarbons or emerging contaminants. Chromium-6 has also been a concern in several shallow wells as described in the 2015 Annual Groundwater Monitoring Report (CHG, 2015). Many water quality constituents are regulated and have drinking water standards.

Monitoring Constituents

Constituents of analysis for the LOBP Groundwater Monitoring Program have been selected to evaluate salt loading and associated nitrate impacts, seawater intrusion, and wastewater disposal. Table 1 lists the general mineral constituents, including nitrate, which will be monitored as part of the program, although additional constituents are quantified in the general mineral suite performed by the analytical laboratory (See Appendix C). Total Dissolved Solids (TDS) and specific conductance are standard measures for groundwater mineralization and salinity. Temperature and pH are parameters that are routinely measured during sampling to confirm that the groundwater samples represent the aquifer. Table 1 presents constituents to be tested in the wells designated for water quality monitoring, which are distributed laterally and vertically across the Basin (Figures 2, 3 and 4).

The Lower Aquifer (via wells LA4, LA14, and LA40) are also monitored using down hole geophysics once every three years (natural gamma and induction logs) to provide a unique measure of seawater intrusion over time in one location within the Basin. Vertical movement of the freshwater-seawater interface has historically averaged two to three feet per year between 1985 and 2015 (CHG, 2015). The practical resolution of the methodology for measuring vertical interface movement is close to five feet, so a three-year monitoring frequency provides sufficient time to identify movement, based on the historical data. LA4 is located at Sea Pines Golf Course in the Western Area, LA14 is located at the north end of Palisades Avenue, and LA40 is on Lupine Avenue. The new Zone E monitoring well, LA 42, at the Skyline site will be used for induction logging in future events. Seawater is highly conductive, compared to fresh water, and an induction log performed in a borehole penetrating the fresh water/seawater interface shows the vertical transition from fresh water to seawater.

Table 1. Water Quality Monitoring Constituents ¹						
Constituent	Reporting Limit	Units				
Specific Conductance	1.0	μS/cm				
pH (field)	0.01	pH units				
Temperature (field)	0.1	°F				
TDS	20	mg/L				
Carbonate Alkalinity	10	mg/L				
Bicarbonate Alkalinity	10	mg/L				
Total Alkalinity as CaCO₃	10	mg/L				
Chloride	1.0	mg/L				
Nitrate – Nitrogen	0.1	mg/L				
Sulfate	0.5	mg/L				
Boron	0.1	mg/L				
Calcium	1.0	mg/L				
Magnesium	1.0	mg/L				
Potassium	1.0	mg/L				
Sodium	1.0	mg/L				

¹From LOBP (ISJ Group, 2015)

Constituents of Emerging Concern

Monitoring Constituents of Emerging Concern (CECs) is a requirement of salt and nutrient management plans adopted pursuant to the SWRCB Recycled Water Policy (SWRCB, 2009). Such monitoring can measure potential dilution and soil-aquifer treatment of recycled water constituents, and travel time and movement of recycled water. As part of LOWRF operation, the County is also required by the Regional Water Quality Control Board Monitoring and Reporting Program (MRP) Order No. R3-2011-0001 to monitor recycled water for CECs on an annual basis.

The initial CECs to be monitored are listed in Table 2, and were selected based on the SWRCB Recycled Water Policy. There are three types of CECs, each of which has a different function. Health-based indicators directly monitor the presence of classes of constituents in groundwater, while performance-based and surrogate indicators measure the effectiveness of the wastewater treatment process. The list of CECs is not intended to be comprehensive, but meant to be representative. CECs may be added to (or removed from) the monitoring list once data has been collected and analyzed, subject to approval by the BMC.

Table 2. CEC Monitoring Constituents ¹						
Constituent or Parameter	Type of Constituent	Type of Indicator	Reporting Limit (µg/L)			
17β-estradiol	Steroid Hormones		0.004			
Triclosan	Antimicrobial	Health	0.008			
Caffeine	Stimulant	пеанн	0.004			
NDMA (N-Nitrosodimethylamine)	Disinfection Byproduct		0.002			
Gemfibrozil	Pharmaceutical Residue		0.004			
DEET (Diethyl-meta-toluamide)	Personal Care Product	Performance	0.004			
lopromide	Pharmaceutical Residue	Periormance	0.004			
Sucralose	Food additive		0.020			
Ammonia	N/A		N/A			
Nitrate-Nitrogen	N/A		N/A			
Total Organic Carbon	N/A	Surrogate	N/A			
UV Light Absorption	N/A		N/A			
Specific Conductance	N/A		N/A			

¹From LOBP (ISJ Group, 2015)

2.2.3 Monitoring Frequency

Monitoring frequency is the time interval between data collection. Seasonal fluctuations relating to groundwater levels or quality are typically on quarterly or semi-annual cycles, correlating with seasonal precipitation, recharge, water levels, and often well production. The monitoring schedule for groundwater levels collected under the LOBP Groundwater Monitoring Program will coincide with seasonal water level fluctuations, with higher levels (i.e. elevations) in April (Spring) and lower levels in October (Fall). The LOWRF Groundwater Monitoring Program (First Water and Upper Aquifer groups) is conducted in June and December, although water levels at many of these wells are also measured under the LOBP program in April and October for use in water level contouring and groundwater storage calculations. A semi-annual monitoring frequency provides a measure of seasonal cycles, which can then be distinguishable from the long-term trends. At the transducer-monitored locations, water level measurements are recorded automatically on a daily basis and downloaded during the regular semi-annual water level monitoring events.

The monitoring frequency for water quality sampling and analyses performed under the LOBP Groundwater Monitoring Program will generally be once per year in October (Fall), when groundwater levels (i.e. elevations) are seasonally low and many water quality constituents have historically been at a higher concentration than their corresponding Spring measurement. Lower Aquifer groundwater monitoring will also be performed in April (Spring) as a means of tracking seawater intrusion in greater detail. The schedule for water quality testing performed under the LOWRF Groundwater Monitoring Program (First Water and Upper Aquifer) is in June and December.

2.2.4 SGMA Activities

SGMA took effect on January 1, 2015 and requires that certain actions be taken in groundwater basins designated as either high or medium priority by DWR, including the Basin. Prior to 2019, DWR had identified the Los Osos Valley groundwater basin as a high priority basin subject to critical conditions of overdraft due to seawater intrusion and nitrate impairment (DWR, 2014, 2016, 2018a). The majority of SGMA requirements, however, including formation of a Groundwater Sustainability Agency (GSA) and development and implementation of a Groundwater Sustainability Plan, did not apply to the LOBP plan areas covered by the Stipulated Judgment, since this portion of the DWR Basin is adjudicated.

In order to comply with SGMA, the County formed the Los Osos Fringe Areas GSA to cover Basin areas between the 2016 Bulletin 118 Los Osos Valley groundwater basin boundaries (Basin 3-8) and the LOBP adjudicated area boundary, which were designated as "fringe areas". A Basin Boundary Modification Request (BBMR) was initiated in 2018 (DWR, 2018b). The Los Osos BBMR included scientific external and jurisdictional subdivision modifications intended to improve the community's ability to sustainably manage the Basin. The proposed boundary modifications would better align DWR's Bulletin 118 Basin boundary with current scientific data as well as existing management boundaries in the Basin.

In 2019, DWR published the final basin boundary modifications updating Bulletin 118 and reassessing groundwater basin prioritizations (DWR, 2019). The Los Osos Valley groundwater basin was separated into two jurisdictional subbasins, the Los Osos Area Subbasin (3-08.01) and the Warden Creek Subbasin (3-08.02). Both subbasins are designated as very low priority for SGMA, although the Los Osos Area subbasin is still classified as subject to critical overdraft due to seawater intrusion (DWR, 2021). The Los Osos Area Subbasin, with the exception of minor fringe areas, lies within the LOBP plan area and overlaps with the LOBP Basin, but does not replace or update the scientific boundary defined in the 2015 Basin adjudication. A figure showing the DWR Los Osos Subbasin boundary and the LOBP Basin boundary is included in Appendix A.

2.2.5 Additional Basin Studies

Several Basin studies and activities in addition to regular groundwater monitoring were authorized or completed in 2023, including:

- A Sustainable Yield estimate for calendar year 2024 of 2,380 acre-feet (unchanged from 2023) was approved by the BMC at the December 6, 2023 Board of Directors meeting.
- The development of a rating curve for the Los Osos Creek stream gauge at Los Osos Valley Road (Station 751) was authorized in 2021, but delayed due to a lack of sufficient stream flow in 2022. The rating curve was completed in 2023 (CHG, 2023a) and was used to convert 16 years of historical stage data into flow data, which will assist in the development of a transient groundwater flow model.

- Planning and funding for a transient Basin model was initiated in 2021. In 2022, the project was combined with the Recycled Water Funding Program Grant Initiative (see Section 10.2), and began in 2023. The transient model would replace the existing steady-state model, once completed.
- At its October 27th, 2021 meeting, the BMC authorized CHG to evaluate the feasibility and cost of modifying existing wells or construction of new monitoring well(s) to improve monitoring of Lower Aquifer water quality and seawater intrusion. A draft study was completed in July 2022 that evaluated the feasibility of modifying up to four existing program wells to become dedicated Zone E water quality monitoring locations, and recommended additional Lower Aquifer monitoring well sites (CHG, 2022b). Based on the recommendations from the CHG evaluation, presented to the BMC at its July 21st, 2022 Meeting, the BMC allocated funding in the 2023 budget for the construction of a set of new monitoring wells to monitor seawater intrusion conditions in Zone D and Zone E of the Lower Aquifer. This funding, combined with funding contributions from the National Estuary Program, allowed the BMC to bid and construct two new monitoring wells at the east end of Skyline Drive (see Section 7.5.3).
- In Calendar Year 2021, BMC Staff began evaluating the existing Basin Monitoring Metrics to determine if there were opportunities to improve those metrics and/or add additional metrics to be able to better assess the health of the Basin. Evaluating and updating the Basin metrics will take into account monitoring data collected after development of the Basin Plan, along with new monitoring locations/wells (e.g. Lupine/Cuesta-by-the-Sea monitoring wells, modified Ferrell monitoring well, Skyline monitoring wells). This effort is currently on hold as the BMC Staff evaluates opportunities to improve the Basin Monitoring Network (i.e. modification of existing wells or new monitoring wells to improve data collection). Any modifications to the LOBP Metrics will require approval by the BMC through the Adaptive Management process.
- The DWR completed an Airborne Electromagnetic (AEM) geophysical survey over the Basin in November 2023. The AEM survey is intended to map subsurface geology and potentially seawater intrusion. Survey results are anticipated to be available in Fall 2024.
- On September 19th, 2022 the BMC authorized CHG to develop a Geographic Information System (GIS) database for wells in the Basin. The Well Database incorporates available information that can be found on well locations, types, depths, screened intervals, status and other attributes from BMC, County Public Health Department, Department of Water Resources and other datasets. The Los Osos Basin Well Database was completed in 2023, with records for over 500 wells, and it is being utilized to support the development of the transient model.

Other BMC activities performed in 2023 are summarized in Section 10.2

3. CONDUCT OF WORK

This Annual Report covers monitoring activities performed during the 2023 calendar year. While information from prior years is included in data presentation and interpretation, the conduct of work and detailed groundwater monitoring results reported herein are for 2023.

3.1 Services Provided

All 2023 groundwater monitoring data compiled for this report, unless described otherwise, comes from the following monitoring programs:

- San Luis Obispo County Public Works, Semi-Annual Water Level Monitoring Program: water level data.
- Purveyor water supply well monitoring: water level, water quality and production data.
- LOWRF Waste Discharge Order R3-2011-0001 Groundwater Monitoring Program (CCRWQCB, 2011): water level and water quality data.
- LOBP Groundwater Monitoring Program: water level and water quality data.

3.2 Field Methods

Groundwater level measurement and groundwater sampling are the primary field activities performed for the LOBP Groundwater Monitoring Program. Field activities include measuring and recording water levels in wells and collecting groundwater samples for laboratory analytical testing. The field methods approved for use in the LOBP Groundwater Monitoring Program are presented in Appendix D. These methods are recommended for services performed directly for the BMC and for other monitoring programs that contribute data to the LOBP Groundwater Monitoring Program.

3.2.1 Elevation Datum

The original survey for wells in the County's Semi-Annual Water Level Monitoring Program was likely based on the National Geodetic Vertical Datum of 1929 (NGVD 29), which has been replaced in land surveying practice by the North American Vertical Datum of 1988 (NAVD 88). Monitoring network wells were re-surveyed in 2003, 2005, 2020 and 2021 using NAVD 88. All wells in the LOBP monitoring network that are used in water level contouring have now been surveyed to NAVD 88 (elevations shown in Tables 3 through 8).

3.2.2 Water Level Monitoring Procedures

Groundwater level monitoring typically uses an electric sounder or steel tape. If the well is equipped and active, monitoring would take place when the pump is off, and the water level is

relatively static. Fourteen monitoring network wells are currently equipped with a pressure transducer, allowing for automatic water level data collection between regular (manual) monitoring events. These devices are placed below the water surface in a well and record changes in pressure that occur in response to changes in the height of the water column above the transducer. Detailed water level monitoring procedures are included in Appendix D.

3.2.3 Groundwater Sampling Procedures

Groundwater sampling procedures ensure collection of a representative groundwater sample from an aquifer for water quality analysis. Unused or unequipped wells are purged of standing or stagnant water prior to sampling. Stabilization of field measurements for conductivity, pH, and temperature, along with minimum purge volumes, are included in the approved methods. Sampling procedures for general mineral and nitrate sampling (with additional procedures for wastewater indicator compounds) are presented in Appendix D.

3.3 Monitoring Staff Affiliations

Monitoring services that contributed data to the 2023 Annual Report were performed by staff or consultants affiliated with the following agencies:

- San Luis Obispo County monitoring programs. Beginning in 2022, the County has contracted Semi-Annual Water Level Program monitoring services in the Los Osos Basin to outside consultants. The Spring and Fall 2023 monitoring event was conducted by M&M Consultants. The County Public Works Department staff continue to collect and maintain precipitation and stream gage records. Rincon Consultants also performed semi-annual (June and December) water level monitoring and water quality sampling at selected private wells and monitoring wells for the LOWRF Groundwater Monitoring Program (data from this program is used in the LOBP Groundwater Monitoring Program).
- Los Osos Water Purveyors (LOCSD, GSWC, S&T). Water agency staff performed semiannual water level monitoring and water quality sampling at municipal water supply wells.
- Los Osos BMC (LOCSD, GSWC, S&T, and County). CHG performed semi-annual (April and October) water level monitoring, water quality sampling at private wells, monitoring wells, and municipal supply wells for the LOBP Groundwater Monitoring Program.

4. MONITORING RESULTS

The results of groundwater monitoring activities performed in 2023 for the various Basin monitoring programs are summarized below. Overlap between the LOBP Groundwater Monitoring Program and other ongoing monitoring programs are shown in Appendix B. Laboratory analytical reports of groundwater samples collected for the LOWRF Groundwater

Monitoring Program are contained in their respective June and December 2023 monitoring program reports (Rincon Consultants, 2023).

4.1 Water Level Monitoring Results

Tables 3 through 8 present the results of groundwater level measurements at LOBP Groundwater Monitoring Program wells, as reported by the various monitoring programs. Available water levels for wells labeled "private" are not reported herein, but those listed as measured have been used for aggregated water level contour maps. Private wells refer to domestic wells, agricultural irrigation wells, and monitoring wells that are not controlled by BMC member agencies.

Most of the Spring and Fall water levels were measured in April and October 2023, respectively, for the County Semi-Annual Water Level Monitoring Program and the LOBP Groundwater Monitoring Program. The LOWRF Groundwater Monitoring Program schedule moved from April to June and from October to December beginning in Fall 2016. For consistency with the LOBP Groundwater Monitoring Program, however, CHG also monitored water levels at selected LOWRF monitoring program wells in April and October 2023, rather than using the June and December 2023 LOWRF monitoring event values.

	Table 3.	Spring 2023 Wa	ter Levels – First	Water		
Well ID	State Well Number	R. P. Elevation (feet NAVD 88)	Date	Water Lev	vel (feet)	
FW1	30S/10E-13A7		PRIVATE (not mea	Depth	Elevation	
FW2	30S/10E-13L8	32.63	4/12/2023	19.32	13.3	
FW3	30S/10E-13G	50.95	4/12/2023	37.89	13.1	
FW4	30S/10E-13H	49.33	4/12/2023	17.71	31.6	
FW5	30S/10E-13Q2	101.27	4/12/2023	80.39	20.9	
FW6	30S/10E-24A	193.04	4/7/2023	138.98	54.1	
FW7	30S/10E-24Ab	155.04	Not measured (da		54.1	
FW8	30S/11E-7L4	45.76	4/11/2023	35.96	9.8	
FW9	30S/11E-7K3	90.71	4/12/2023	52.11	38.6	
FW10	30S/11E-7Q1	25.29	4/7/2023	6.74	18.6	
FW11	30S/11E-7R2	61.93	4/12/2023	20.3	41.6	
FW12	30S/11E-18C2	34.55	4/5/2023	17.93	16.6	
FW13	30S/11E-18B2	79.89	4/5/2023	17.29	62.6	
FW14	30S/11E-18E1	PRIVATE (not measured – destroyed)				
FW15	30S/11E-18N2	125.53	4/12/2023	73.58	52.0	
FW16	30S/11E-18L11	88.02	4/14/2023	42.04	46.0	
FW17	30S/11E-18L12	103.85	4/5/2023	16.5	87.4	
FW18	30S/11E-18P	143.92	4/14/2023	21.12	122.8	
FW19	30S/11E-18J7	125.74	4/12/2023	17.84	107.9	
FW20	30S/11E-8Mb	94.75	4/12/2023	43.09	51.7	
FW21	30S/11E-8N4	95.99	4/12/2023	37.16	58.8	
FW22	30S/11E-17F4		PRIVATE (meas	ured)		
FW23	30S/11E-17N4		PRIVATE (meas	ured)		
FW24	30S/11E-17J2		PRIVATE (meas	ured)		
FW25	30S/11E-17R1	PRIVATE (not measured)				
FW26	30S/11E-20A2	PRIVATE (measured)				
FW27	30S/11E-20L1	PRIVATE (measured)				
FW28	30S/11E-20M2	PRIVATE (measured)				
FW29	30S/11E-20A1	PRIVATE (not measured)				
FW30	30S/11E-18R1	PRIVATE (measured)				
FW31	30S/11E-19A	214.67 4/7/2023 23.56 191.1				
FW32	30S/11E-21D14	PRIVATE (measured)				
FW33	30S/11E-18D1S	PRIVATE (measured)				

Table 4. Spring 2023 Water Levels – Upper Aquifer								
Well ID	State Well Number	R. P. Elevation (feet NAVD	Date		Water Level (feet)			
ıυ		88)		Depth	Elevation			
UA1	30S/10E-11A1	16.01	4/13/2023	12.81	3.2			
UA2	30S/10E-14B1	23.9	4/13/2023	20.75	3.2			
UA3	30S/10E-13F1	17.57	4/10/2023	7	10.6			
UA4	30S/10E-13L1	40.31	4/7/2023	28.28	12.0			
UA5	30S/11E-7N1	10.66	4/17/2023	5.2	5.5			
UA6	30S/11E-18L8	79.18	4/6/2023	52.98	26.2			
UA7	30S/11E-18L7	79.16	4/6/2023	62.03	17.1			
UA8	30S/11E-18K7	137.17	4/6/2023	117.14	20.0			
UA9	30S/11E-18K3	123.42	4/10/2023	102	21.4			
UA10	30S/11E-18H1	110.02	4/7/2023	90.07	20.0			
UA11	30S/11E-17D		PRIVATE (not me	easured)				
UA12	30S/11E-17E9	107.39	4/6/2023	85	22.4			
UA13	30S/11E-17E10	107.81	4/17/2023	92.3	15.5			
UA14	30S/11E-17P4		PRIVATE (not me	easured)				
UA15	30S/11E-20B7	PRIVATE (not measured)						
UA16	30S/11E-17L4	PRIVATE (measured)						
UA17	30S/11E-17E1	PRIVATE (measured)						
UA18	30S/11E-17F2	PRIVATE (measured)						
UA19	30S/11E-7Q	26.80	26.80 4/14/2023 17.52 9.3					

May 2024 DRAFT

	Table 5. Sprin	ng 2023 Water L	Levels – Lower Ac	guifer		
Well ID	State Well Number	R. P. Elevation (feet NAVD 88)	Date		evel (feet) Elevation	
LA1	30S/10E-2A1	23.13	4/13/2023	15.34	7.8	
LA2	30S/10E-11A2	16.07	4/13/2023	10.57	5.5	
LA3	30S/10E-14B2	23.89	4/13/2023	20.81	3.1	
LA4	30S/10E-13M1	42.7	5/4/2023	42.58	0.1	
LA5	30S/10E-13L7	37.87	4/16/2023	31.4	6.5	
LA6	30S/10E-13L4	70.02	4/7/2023	62	8	
LA7	30S/10E-13P2	70.02	PRIVATE (not mea		<u> </u>	
LA8	30S/10E-13N	141.36	4/25/2023	133.6	7.8	
LA9	30S/10E-24C1	180.34	4/10/2023	171	9.3	
LA10	30S/10E-13J1	98.33	4/10/2023	95	3.3	
LA11	30S/10E-12J1	8.43	4/7/2023	0.78	7.7	
LA12	30S/11E-7Q3	27.75	4/17/2023	23.7	4.1	
LA13	30S/11E-18F2	103.57	4/10/2023	96.36	7.2	
LA14	30S/11E-18L6	79.52	4/4/2023	71.08	8.4	
LA15	30S/11E-18L2	88.08	4/17/2023	87.5	0.6	
LA16	30S/11E-18M1	108.74	4/8/2023	97.76	11.0	
LA17	30S/11E-24A2	212.82	4/11/2023	186.33	26.5	
LA18	30S/11E-18K8	137.13	4/6/2023	128.93	8.2	
LA19	30S/11E-19H2	257.35	4/11/2023	257.9	-0.5	
LA20	30S/11E-17N10	141.22	4/10/2023	158	-16.8	
LA21	30S/11E-17E7	107.22	4/6/2023	100.28	6.9	
LA22	30S/11E-17E8	107.27	4/6/2023	132.15	-24.9	
LA23 to LA	30	PRIVATE (measured LA 24 – LA30, LA 23 not measured)				
LA31	30S/10E-13M2	(Mixed	l aquifer – used for wa	ater quality on	ly)	
LA32	30S/11E-18K9	(Mixed	l aquifer – used for wa	ater quality on	ly)	
LA33	30S/11E-17A1		PRIVATE (measu	ıred)		
LA34	30S/11E-8F	26.15	4/7/2023	1.12	25.0	
LA35	30S/11E-21Bb	86.80	4/7/2023	43	43.8	
LA36	30S/11E-21Ja		PRIVATE (not mea	sured)		
LA37	30S/11E-21B1	81.61	4/7/2023	55.3	26.3	
LA38	30S/11E-21E	PRIVATE (measured)				
LA39	30S/11E-18K_	123.17	3/29/2023	124	-0.8	
LA40	30S/10E-13Ba	11.47	4/12/2023	6.23	5.2	
LA41	30S/10E-13Bb	11.46	4/11/2023	5.25	6.2	

Table 6. Fall 2023 Water Levels – First Water						
Well ID	State Well Number	R. P. Elevation (feet NAVD 88)	Date	Water Level (feet) Depth Elevation		
FW1	30S/10E-13A7	00)	PRIVATE (not meas	sured)		
FW2	30S/10E-13L8	32.63	10/9/2023	21.16	11.5	
FW3	30S/10E-13G	50.95	10/9/2023	38.58	12.4	
FW4	30S/10E-13H	49.33	10/10/2023	22.01	27.3	
FW5	30S/10E-13Q2	101.27	10/10/2023	79.32	22.0	
FW6	30S/10E-24A	193.04	10/13/2023	140.05	53.0	
FW7	30S/10E-24Ab	Not measured (damaged)				
FW8	30S/11E-7L4	45.76	10/4/2023	37.98	7.8	
FW9	30S/11E-7K3	90.71	10/4/2023	52.82	37.9	
FW10	30S/11E-7Q1	25.29	10/13/2023	8.42	16.9	
FW11	30S/11E-7R2	61.93	10/4/2023	23.11	38.8	
FW12	30S/11E-18C2	34.55	10/13/2023	19.34	15.2	
FW13	30S/11E-18B2	79.89	10/10/2023	20.58	59.3	
FW14	30S/11E-18E1	PRIVATE (not measured – destroyed)				
FW15	30S/11E-18N2	125.53	10/10/2023	72.02	53.5	
FW16	30S/11E-18L11	88.02	10/9/2023	40.81	47.2	
FW17	30S/11E-18L12	103.85	10/9/2023	19.59	84.3	
FW18	30S/11E-18P	143.92	10/10/2023	18.56	125.4	
FW19	30S/11E-18J7	125.74	10/9/2023	22.9	102.8	
FW20	30S/11E-8Mb	94.75	10/10/2023	43.19	51.6	
FW21	30S/11E-8N4	95.99	10/10/2023	37.16	58.8	
FW22	30S/11E-17F4	PRIVATE (measured)				
FW23	30S/11E-17N4	PRIVATE (measured)				
FW24	30S/11E-17J2	PRIVATE (measured)				
FW25	30S/11E-17R1	PRIVATE (not measured)				
FW26	30S/11E-20A2	PRIVATE (measured)				
FW27	30S/11E-20L1	PRIVATE (measured)				
FW28	30S/11E-20M2	PRIVATE (measured)				
FW29	30S/11E-20A1	PRIVATE (not measured)				
FW30	30S/11E-18R1	PRIVATE (measured)				
FW31	30S/11E-19A	214.67	10/13/2023	25.61	189.1	
FW32	30S/11E-21D14	PRIVATE (measured)				
FW33	30S/11E-18D1S	PRIVATE (measured)				

Table 7. Fall 2023 Water Levels – Upper Aquifer							
Well ID	State Well Number	R. P. Elevation (feet NAVD 88)	Date	Water Level (feet)			
				Depth	Elevation		
UA1	30S/10E-11A1	16.01	10/10/2023	12.13	3.9		
UA2	30S/10E-14B1	23.9	10/10/2023	19.13	4.8		
UA3	30S/10E-13F1	17.57	10/11/2022	6	11.6		
UA4	30S/10E-13L1	40.31	10/13/2023	27.5	12.8		
UA5	30S/11E-7N1	10.66	10/17/2023	6.3	4.4		
UA6	30S/11E-18L8	79.18	10/12/2023	53.62	25.6		
UA7	30S/11E-18L7	79.16	10/12/2023	63.77	15.4		
UA8	30S/11E-18K7	137.17	10/17/2023	118.3	18.9		
UA9	30S/11E-18K3	123.42	10/19/2023	104	19.4		
UA10	30S/11E-18H1	110.02	10/13/2023	92.85	17.2		
UA11	30S/11E-17D	PRIVATE (not measured)					
UA12	30S/11E-17E9	107.39	10/17/2023	87.88	19.5		
UA13	30S/11E-17E10	107.81	10/17/2023	94.3	13.5		
UA14	30S/11E-17P4	PRIVATE (not measured)					
UA15	30S/11E-20B7	PRIVATE (not measured)					
UA16	30S/11E-17L4	PRIVATE (measured)					
UA17	30S/11E-17E1	PRIVATE (measured)					
UA18	30S/11E-17F2	PRIVATE (measured)					
UA19	30S/11E-7Q_	26.80	10/10/2023	17.52	9.3		

Table 8. Fall 2023 Water Levels – Lower Aquifer						
Well ID	State Well Number	R. P. Elevation (feet NAVD 88)	Date	Water Level (feet) Depth Elevation		
LA1	30S/10E-2A1	23.13	10/10/2023	15.28	7.9	
LA2	30S/10E-11A2	16.07	10/10/2023	10.06	6.0	
LA3	30S/10E-14B2	23.89	10/10/2023	20.78	3.1	
LA4	30S/10E-13M1	42.70	11/7/2023	42.82	-0.1	
LA5	30S/10E-13L7	37.87	10/19/2023	30.66	7.2	
LA6	30S/10E-13L4	70.02	10/19/2023	62	8.0	
LA7	30S/10E-13P2	PRIVATE (not measured)				
LA8	30S/10E-13N	141.36	10/19/2023	133.4	8.0	
LA9	30S/10E-24C1	180.34	10/18/2023	170.5	9.8	
LA10	30S/10E-13J1	98.33	10/18/2023	96	2.3	
LA11	30S/10E-12J1	8.43	10/4/2023	2.65	5.8	
LA12	30S/11E-7Q3	27.75	10/17/2023	20	7.8	
LA13	30S/11E-18F2	103.57	10/13/2023	100	3.6	
LA14	30S/11E-18L6	79.52	10/12/2023	74.39	5.1	
LA15	30S/11E-18L2	88.08	10/17/2023	88.5	-0.4	
LA16	30S/11E-18M1	108.74	10/10/2023	98.54	10.2	
LA17	30S/11E-24A2	212.82	10/12/2023	192.86	20.0	
LA18	30S/11E-18K8	137.13	10/13/2023	132.76	4.4	
LA19	30S/11E-19H2	257.35	10/12/2023	258.41	-1.1	
LA20	30S/11E-17N10	141.22	10/18/2023	150	-8.8	
LA21	30S/11E-17E7	107.22	10/13/2023	107.76	-0.5	
LA22	30S/11E-17E8	107.27	10/13/2023	140.82	-33.6	
LA23 to	LA30	PRIVATE (measured LA 24 – 27,29, 30; LA 23 & 28 not measured)				
LA31	30S/10E-13M2	(Mixed aquifer – used for water quality only)				
LA32	30S/11E-18K9	(Mixed aquifer – used for water quality only)				
LA33	30S/11E-17A1	PRIVATE (measured)				
LA34	30S/11E-8F	26.15	10/1/2023	5.57	20.6	
LA35	30S/11E-21Bb	86.80	10/13/2023	36	50.8	
LA36	30S/11E-21Ja	PRIVATE (not measured)				
LA37	30S/11E-21B1	81.61	10/13/2023	62.66	19.0	
LA38	30S/11E-21E	PRIVATE (measured)				
LA39	30S/11E-18K_	123.17	10/19/2023	139	-15.8	
LA40	30S/10E-13Ba	11.47	10/13/2023	5.93	5.5	
LA41	30S/10E-13Bb	11.46	10/13/2023	6.98	4.5	

4.2 Water Quality Results

Available Fall 2023 water quality results for First Water and Upper Aquifer monitoring wells designated for water quality reporting in the LOBP Groundwater Monitoring Program are presented in Table 9. The LOBP Groundwater Monitoring Program does not include Spring 2023 water quality monitoring at First Water or Upper Aquifer Wells. Available Spring and Fall 2023 water quality for Lower Aquifer monitoring wells designated for water quality reporting in the LOBP Groundwater Monitoring Program are presented in Tables 10 and 11. Groundwater monitoring field logs and laboratory analytical reports for the 2023 LOBP Groundwater Monitoring Program are included in Appendix C.

Some of the constituents of analysis that are part of the LOBP Groundwater Monitoring Program listed in Table 1 are not included in the LOWRF Groundwater Monitoring Program. The missing constituents include specific conductance, alkalinity (bicarbonate, carbonate, and total), calcium, magnesium, and potassium.

Lower Aquifer wells LA2 and LA3 on the Morro Bay sand spit are scheduled for water quality monitoring every five years to track changes in salinity at the coast (2015 LOBP). The next scheduled water quality sampling event on the sand spit will be in 2025.

4.2.1 Nitrate and Chloride Results

Results for First Water wells indicate elevated nitrate concentrations across much of the central and western areas, which are attributed to historical septic system discharges in high-density residential areas (LOBP; ISJ Group, 2015). A more extensive compilation of shallow water quality, including nitrate and TDS concentration maps, are presented for June and December 2023 in the County's LOWRF Groundwater Monitoring Program reports (Rincon Consultants, 2020-2023). Nitrate concentration trends are tracked using the Nitrate Metric (see Section 7.5.3).

Lower Aquifer water quality results for 2023 show three wells impacted by seawater intrusion, based on chloride concentrations over 250 mg/L. These wells are LA11 (Central Area Zone E), LA31 (Western Area Zone C/D; intrusion in Zone D), and LA40 (Western Area Zone E). The overall trend in chloride concentration and seawater intrusion is tracked using the Chloride Metric (see Section 7.5.3).

4.2.2 CEC Results

CEC sampling was conducted at well FW5 and FW6 in October 2023 (CEC constituents list and reporting limits shown in Table 2). FW6, which is the first monitoring well hydraulically downgradient of the Broderson Site, was originally designated in the LOBP (along with FW26) as a CEC monitoring well. Due to extreme drought conditions when CEC testing started in 2016, there was insufficient water for representative CEC testing at FW6, so FW5 was used as a replacement (CHG, 2017). Following Broderson mound development and higher than normal

rainfall in 2019, CEC testing at FW6 was possible beginning in in Fall 2020 (testing at FW5 continued). Wells FW5 and FW6 are both hydraulically downgradient of the Broderson leach field site, where most of the recycled water from LOWRF is discharged into the Basin, and where high-density (>1 per acre) septic systems were active prior to being connected to the sewer.

FW26 is located in the Los Osos Creek Valley, where there are low-density (<1 per acre) septic systems (Figure 2). FW26 is normally included in the CEC analyses every Fall, but the well pump has not been operational since 2022, and it is still unavailable for sampling.

CEC results are presented in Table 12, with laboratory reports included in Appendix C. As discussed below, CEC testing results are interpreted to indicate wastewater influence at FW5 and FW6, based on sucralose and nitrate concentrations.

		T	able 9.	Fall	2023 Wa	ater Qu	ality Re	sults – Fi	rst W	ater and	Upper .	Aquife	r				
LOBP			a.a	рН	mp a		Alkalinit	у	G1	,,,,,,,,,	~~.	_	_		**		Т
Well	Well State Well Number	Date	SC	(field)	TDS	CO3	НСО3	Total as CaCO3	Cl	NO3-N	SO4	В	Ca	Mg	K	Na	(field)
			μS/c m	pH units						- mg/L							°F
FW2*	30S/10E-13L8	12/7/2023		6.25	470				80	24	39.0	0.1				100	65.84
FW5*	30S/10E-13Q2	12/6/2023		6.21	500				190	11	38.0	0.2				77	65.30
FW6	30S/10E-24A	10/20/2023	878	6.68	510	<10	180	150	140	3.2	53.4	0.2	27	22	2	105	68.36
FW10	30S/10E-7Q1	11/14/2023	547	6.76	320	<10	100	80	61	13	44.1	0.2	18	14	3	61	65.30
FW15*	30S/11E-18N2	12/6/2023		5.83	410				110	18	38.0	0.1				53	65.84
FW16*	30S/11E-18L11	12/5/2023		6.27	240				40	8.7	51.0	<0.1				25	67.82
FW17*	30S/11E-18L12	12/7/2023		6.49	310				70	13	50.0	0.15				45	64.94
FW26	30S/11E-20A2							No	t Sample	ed							
FW28	30S/11E-20M2	10/26/2023	911	7.18	570	<10	400	330	71	<0.1	81.9	0.1	69	57	2	40	61.52
UA1	30S/10E-11A1							No	t Sample	ed							
UA3	30S/10E-13F4	10/10/2023	569	7.45	390	<10	80	60	77	18.0	22.3	<0.1	22	17	2	52	65.50
UA9	30S/11E-18K3	10/10/2023	349	7.48	230	<10	60	50	45	9.6	8.6	<0.1	16	13	1	28	66.00
UA13	30S/11E-17E10	10/9/2023	526	8.04	370	<10	100	80	58	15.0	25.0	<0.1	22	22	1	38	63.86

NOTES: "-" = no result available; SC = specific conductance; TDS = total dissolved solids; CO3 = carbonate; HCO3= bicarbonate; CaCO3 = total alkalinity as calcium carbonate; Cl = chloride; NO3-N = nitrate as nitrogen; SO4 = sulfate; B = boron; Ca = calcium; Mg = magnesium; K = potassium; Na = sodium; T = temperature; μS/cm = microsiemens per centimeter; mg/L = milligrams per liter; °F = degrees Fahrenheit; < indicates less than Practical Quantitation Limit as listed in laboratory report.

32

2023 Annual Monitoring Report

^{* =} readings from LOWRF Groundwater Monitoring Program sampling event in December 2023 (Rincon Consultants, 2023)

	Table 10. Spring 2023 Water Quality Results – Lower Aquifer																
LOBP			SC	рН	TDS		Alkalinity		Cl	NO3-N	SO4	В	Ca	Mg	K	Na	Т
State Well	Date	SC	(field)	103	CO3	НСО3	CaCO3	Ci	304		В	Ca	Nig	K	Na	(field)	
Well	rumeer		μS/cm	pH units						mg/L					-		°F
LA8	30S/10E-13N	4/13/2023	443	7.95	250	<10	60	50	80	7.3	13.2	<0.1	21	21	1	41	65.30
LA9	30S/10E-24C1	4/11/2023	518	7.5	330	<10	80	70	98	6.8	17.3	<0.1	19	17	1	43	67.70
LA10	30S/10E-13J1	5/8/2023	892	7.13	690	<10	80	70	211	2.0	12.5	<0.1	49	44	2	51	66.56
LA11	30S/10E-12J1	4/13/2023	1840	7.65	1040	<10	350	280	346	<0.1	188	0.2	92	103	5	89	69.08
LA12	30S/10E-7Q3	4/5/2023	842	7.13	490	<10	310	250	98	<0.1	51.9	0.2	48	48	3	72	69.62
LA13	30S/11E-18F2	4/10/2023	668	8.33	310	<10	190	160	77	<0.1	62.1	<0.1	15	23	2	76	72.14
LA15	30S/11E-18L2	4/11/2023	877	8.22	470	<10	250	200	142	0.8	31.4	<0.1	47	40	2	37	63.32
LA18	30S/11E-18K8	4/6/2023	623	7.54	410	<10	310	250	32	<0.1	38.7	<0.1	50	31	2	26	72.68
LA20	30S/11E-17N10	4/11/2023	515	7.8	290	<10	200	170	43	3.4	21.8	0.1	28	25	2	33	67.8
LA22	30S/11E-17E8	4/6/2023	496	7.39	300	<10	200	160	41	5.5	14.9	<0.1	26	27	1	26	69.08
LA30	30S/11E-20H1	4/18/2023	914	7.57	550	<10	420	340	58	<0.1	91.2	0.1	68	49	2	38	64.4
LA31	30S/10E-13M2	5/4/2023	2180	7.10	1370	<10	70	50	599	0.6	121	0.1	52	54	4	272	65.48
LA32	30S/11E-18K9	4/5/2023	465	7.15	290	<10	190	160	38	1.4	22.8	<0.1	25	26	1	33	69.26
LA39	30S/11E-18K_	4/11/2023	626	7.50	340	<10	310	260	38	<0.1	30.1	<0.1	33	32	1	40	70.0
LA40	30S/10E-13Ba	4/12/2023	9020	7.34	5870	<10	280	230	2820	<0.1	232	<0.1	575	762	7	198	69.62
LA41	30S/10E-13Bb	4/11/2023	764	7.52	440	<10	340	280	51	<0.1	58	<0.1	48	34	2	47	70.52

NOTES:"—" = no result available; SC = specific conductance; TDS = total dissolved solids; CO3 = carbonate; HCO3= bicarbonate; CaCO3 = total alkalinity as calcium carbonate; CI = chloride; NO3-N = nitrate as nitrogen; SO4 = sulfate; B = boron; Ca = calcium; Mg = magnesium; K = potassium; Na = sodium; T = temperature; μS/cm = microsiemens per centimeter; mg/L = milligrams per liter; °C = Celsius (some values converted from degrees Fahrenheit as reported on field logs); + indicates addition to monitoring program; < indicates less than Practical Quantitation Limit as listed in laboratory report.

	Table 11. Fall 2023 Water Quality Results – Lower Aquifer																
						Alkalinity										Т	
LOBP Well	State Well Number	Date	SC	pH (field)	TDS	СОЗ	НСО3	Total as CaCO3	Cl	NO3-N	SO4	В	Ca	Mg	K	Na	(field)
Wen			μS/cm	pH units		mg/L						°F					
LA8	30S/10E-13N	10/4/2023	455	7.59	310	<10	60	50	81	7.3	13.1	<0.1	17	16	2	40	65.3
LA9	30S/10E-24C1	10/10/2023	545	7.58	380	<10	70	60	96	6.8	17.4	<0.1	20	19	2	47	65.7
LA10	30S/10E-13J1	10/10/2023	805	7.58	610	<10	80	70	180	3.2	13.2	<0.1	45	40	2	35	68
LA11	30S/10E-12J1	10/4/2023	1910	7.38	1300	<10	340	280	350	<0.1	188	0.2	102	112	5	93	70.16
LA12	30S10E-7Q3	10/11/2023	849	7.41	520	<10	310	250	95	<0.1	52.1	0.2	47	44	2	53	68.9
LA13	30S/11E-18F2	10/11/2023	656	7.73	400	<10	280	230	50	<0.1	39.7	<0.1	23	27	2	70	72.32
LA15	30S/11E-18L2	10/9/2023	898	7.37	570	<10	270	220	130	0.5	31.1	<0.1	55	47	2	40	66.38
LA18	30S/11E-18K8	10/17/2023	622	7.10	430	<10	310	250	31	<0.1	37.7	<0.1	53	32	2	26	73.04
LA20	30S/11E-17N10	10/10/2023	538	7.64	320	<10	220	180	43	3.0	23.4	0.1	31	28	2	36	68.4
LA22	30S/11E-17E8	10/17/2023	465	7.00	290	<10	170	140	45	6.1	13.7	<0.1	25	26	2	28	67.28
LA30	30S/11E-20H1	10/23/2023	919	7.29	590	<10	420	340	55	<0.1	91	0.1	69	59	2	39	61.7
LA31	30S/10E-13M2	11/7/2023	2340	7.97	1440	<10	70	60	600	0.7	131	0.1	68	62	3	247	65.66
LA32	30S/11E-18K9	10/10/2023	482	7.63	290	<10	200	160	38	1.3	21.4	<0.1	26	25	2	32	69.62
LA39	30S/11E-18K_	10/10/2023	632	7.37	370	<10	310	250	37	<0.1	29.4	<0.1	37	37	2	42	70.3
LA40	30S/10E-13Ba	10/24/2023	9200	6.91	9610	<10	280	230	3200	<0.1	259	<0.1	764	619	6	201	70.88
LA41	30S/10E-13Bb	10/20/2023	754	7.02	460	<10	340	280	48	<0.1	57.2	<0.1	50	38	2	50	69.8

NOTES: *LA10 chloride result affected by wellbore leakage (see Section 7.5.3); "—" = no result available; SC = specific conductance; TDS = total dissolved solids; CO3 = carbonate; HCO3= bicarbonate; CaCO3 = total alkalinity as calcium carbonate; Cl = chloride; NO3-N = nitrate as nitrogen; SO4 = sulfate; B = boron; Ca = calcium; Mg = magnesium; K = potassium; Na = sodium; T = temperature; μS/cm = microsiemens per centimeter; mg/L = milligrams per liter; "F = degrees Fahrenheit.

2023 Annual Monitoring Report

	Table 12.	CEC Monito	ring Results	
Constituent or Parameter	Units	FW5	FW6	LOWRF Recycled Water ¹
1 ai ainetei		10/30	0/2023	12/6/2023
Health-based				
17β-estradiol	ng/L	ND (<4)	ND (<4)	ND (<10)
Triclosan	ng/L	ND (<8)	ND (<8)	ND (<50)
Caffeine	ng/L	ND (<4)	ND (<4)	53
NDMA	ng/L	ND (<2)	ND (<2)	1.2
Performance-based				
Gemfibrozil	ng/L	ND (<4)	ND (<4)	70
DEET	ng/L	7.9	6.2	19
Iopromide	ng/L	ND (<4)	ND (<4)	ND (<10)
Sucralose ²	ng/L	12,000	16,000	100,000
Surrogate				
Ammonia	mg/L	ND (<0.1)	ND (<0.1)	
Nitrate-Nitrogen	mg/L	11	3.2	3.2 ³
Total Organic Carbon	mg/L	0.49	0.91	
UV Light Absorption	1/cm	0.010	0.014	
Specific Conductance	μmhos/cm	900	870	

¹2023 LOWRF Analytical Report, January 11, 2024

ng/L = nanograms per liter; mg/L = milligrams per liter, μ mhos/cm = micromhos per centimeter; :"—" = no result available ND (<) = indicates less than Method Reporting Limit as listed in laboratory report ("not detected")

CEC Laboratory results, and a summary sheet of the CEC constituents tested, along with analytical method information, is included in Appendix C. Constituents detected above the reporting limits and listed in Table 12 are discussed below.

DEET (Diethyl-meta-toluamide), a personal care product used for insect repellent, was detected in both groundwater samples, no DEET was detected in the laboratory blanks. Sucralose, an artificial sweetener, was reported at 12,000 nanograms per liter (ng/L) in groundwater from FW5 and is an indicator of wastewater influence (i.e. originating from sources of wastewater including septic discharges or recycled water discharges). Sucralose was detected in FW6 at 16,000 ng/L, markedly less than last year's concentration of 43,000 ng/L. Laboratory reports indicated that these concentrations are estimated values above the calibration range.

² Concentration is an estimated value above calibration range

³ November 2023 average for Total Nitrogen.

Nitrate-nitrogen was reported at 11 mg/L in groundwater from FW5, and 3.2 mg/L in FW6. NDMA (N-Nitroso-dimethylamine) was not detected in either FW5 or FW6. Available CEC-constituent quality of recycled water from LOWRF is also provided in Table 12 for comparison. NDMA is a byproduct of ion-exchange water treatment and chlorine, ozone, or chloramine disinfection.

Results of the CEC testing are interpreted to indicate wastewater influence at FW5, based on sucralose and nitrate concentrations. Sucralose concentrations decreased from 14,600 ng/L to 12,000 ng/L at FW5 between 2022 and 2023. Nitrate-nitrogen concentrations at the well also decreased from 15 mg/L in 2022 to 11 mg/L in 2023. Dilution from recharge, following a high rainfall year, may be partially responsible for the decreasing sucralose and nitrate concentrations at FW5. Concentrations of these constituents, however, have shifted significantly in the direction of LOWRF recycled water discharge quality since CEC monitoring began in 2016, when sucralose was 280 ng/L and nitrate nitrogen was 26 mg/L in groundwater collected from FW5 (CHG, 2016b).

FW6 is the sentry well for Broderson recycled water discharges entering the Basin. As expected, the CEC results for FW6 also show recycled water influence attributed to Broderson discharges. The nitrate-nitrogen concentrations are an order of magnitude less than concentrations detected prior to Broderson site operation and have been similar to LOWRF effluent. Sucralose concentrations at FW6 have increased over time, and are significantly elevated relative to the initial value of 2,300 ng/L measured in 2020. Sucralose is a food additive and there is no State notification level for sucralose concentrations in drinking water.

A review of CEC testing constituents and locations is recommended. With several years of available data at the CEC wells, the list of CEC constituents may be reviewed to determine whether some of the constituents being tested are unnecessary, or if there are others that would be useful to include. Now that wastewater influence from Broderson discharges has reached both FW5 and FW6, which are relatively close to the community leach field, it may be beneficial to move the sampling locations to other wells that are farther away, in order to obtain new information. The well pump at FW26 has also not been functional the last two years, and alternatives may be considered for finding another well to sample in the vicinity, or re-evaluating the necessity for continued CEC sampling in the Creek Valley.

4.3 Geophysics

The most recent induction and natural gamma logging were performed at Lower Aquifer monitoring well LA4, LA14, and LA40 on November 5, 2021. Seawater is highly conductive, compared to fresh water, and an induction log performed in a borehole penetrating the fresh water/seawater interface will show the vertical transition from fresh water to seawater. Because natural gamma emissions are not affected by changes in water quality, the gamma ray log can be used as a depth calibration tool when comparing induction logs from different monitoring events. The fresh water/seawater interface on geophysical logs is selected where resistivity becomes a relatively straight and vertical line close to zero ohm-meters. This interface does not correspond to the 250

mg/L chloride concentration isopleth used to delineate the seawater intrusion front in contour maps, but represents a greater chloride concentration transition that is used for relative comparison between geophysical surveys.

Geophysical monitoring events have been performed in 1985, 2004, 2009, 2014, 2015, 2018 and 2021 at LA4 and LA14. The fresh water/seawater interface at LA4 rose approximately 50 feet between 1985 and 2009, with Lower Aquifer production reaching historical highs. Since 2009, induction logging at well LA4 indicates the fresh water/seawater interface has dropped approximately 18 feet in elevation in response to a general reduction in the west side Lower Aquifer pumping. No evidence of seawater intrusion has been observed in geophysical logging at Lower Aquifer monitoring well LA14. Historical geophysical records were included in the 2021 Annual Report (CHG, 2022).

Geophysical monitoring events were completed in 2019 and 2021 at LA40. The fresh water/seawater interface is interpreted to have remained unchanged at approximately 410 feet depth between monitoring events (CHG, 2022a). The next scheduled geophysical logging will be in October of 2024.

5. GROUNDWATER PRODUCTION

Land use and water use areas overlying the Basin, including Purveyor service areas, agricultural parcels, domestic parcels, and community facilities are included in Appendix E. Annual Basin groundwater production between 1970 and 2013 was reported in the LOBP (ISJ Group, 2015). Tables 13 and 14 present municipal and Basin production beginning in calendar year 2013.

Table 1	Table 13. Municipal Groundwater Production (2013-2023)											
Year	LOCSD	GSWC	S&T	Total								
rear	Acre-Feet ¹											
2013	726	689	55	1,470								
2014	634	564	48	1,246								
2015	506	469	32	1,007								
2016	519	453	31	1,003								
2017	568	450	32	1,050								
2018	522	464	32	1,018								
2019	506	454	31	991								
2020	527	502	34	1,063								
2021	503	491	32	1,026								
2022	496	491	29	1,016								
2023	487	470	27	984								

Note: ¹Metered production

Table	e 14. Estima	ted Basin Gr	oundwater Pr	oduction (2013	3-2023)
Year	Purveyors	Domestic	Community	Agriculture	Total
rear			Acre-Feet ¹		
2013	1,470	200	140	750	2,560
2014	1,246	220	130	800	2,400
2015	1,007	220	140	800	2,170
2016	1,003	220	140	800	2,160
2017	1,050	220	130	670	2,070
2018	1,018	220	120	670	2,030
2019	991	220	60	630	1,900
2020	1,063	220	80	650	2,010
2021	1,026	220	130	620	2,000
2022	1,016	220	90	680	2,010
2023	984	110	60	500	1,650

Note: ¹All figures except Purveyors rounded to the nearest 10 acre-feet. Production from non-metered wells (Domestic, Community, Agricultural) estimated per methods described in Appendix F and LOBP Section 4 and Section 7.5. Domestic production for 2023 uses recommended updates from 2023 Water Offset Study (see Appendix F).

Table 14 shows the recent trend in Basin water use, which is an overall decline since 2013, and estimated Basin production is now at the lowest level since 1973. Produced water from purveyors has remained at a relatively consistent rate since 2015. The estimate of private domestic water use in 2023 has been reduced significantly from previous years, based on the recommendations of the 2023 Water Offset Study (Maddaus Water Management, 2023). The decrease is directly attributable to the community trending towards drought-tolerant landscaping and a reduction in private lawns, based on a comparison of CHG's study (CHG, 2009b) and the recent Maddaus study. Although the decrease is implemented in 2023, there has likely been a gradual reduction in private domestic water use from wells over the last 15 years.

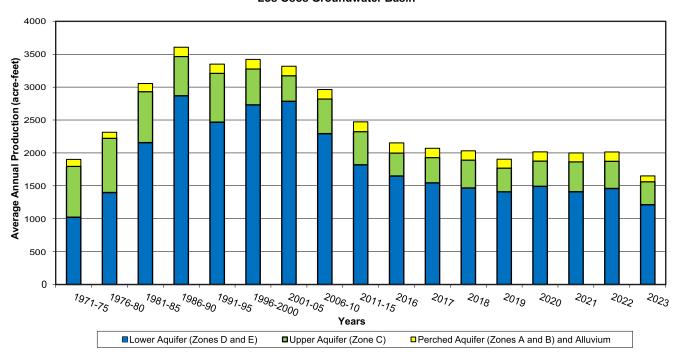

Community facilities water use had been relatively stable until 2019, when recycled water deliveries began for golf course irrigation. Estimated agricultural irrigation decreased from 2022 to 2023 in response to the high rainfall year and lower evapotranspiration rates (details in Appendix F). Overall declines in Basin production since 2015 are primarily from declines in estimated production values, rather than metered production.

Figure 6 shows the historical pumping distribution between Basin aquifers since 1970, along with the pumping distribution in the Western Area. Figure 7 shows the historical pumping distribution for the Central and Eastern Areas. There was an estimated 35 percent reduction in Basin production over the last 10 years, of which reduced purveyor pumping from wells in the Lower Aquifer Western Area accounted for approximately 26 percent of the total reduction in Basin pumping (Figure 6). Over the last five-year period (2019-2023), overall Lower Aquifer production in the Basin has been relatively stable to slightly declining, although in the Western Area annual production from the Lower Aquifer has increased by 85 acre-feet (from 190 acre-feet in 2019 to 275 acre-feet in 2023).

Purveyor municipal production data are based on meter readings and reported to the closest acrefoot. Domestic groundwater production estimates through 2022 are based on the last reported water use estimates for 2013 from the LOBP, with minor adjustments in 2014 for the inclusion of additional residences in the Eastern Area (CHG, 2017). For the 2023 Annual Report, the domestic water production estimates are based on the estimates from the 2023 Water Offset Study discussed above. Production estimates for community facilities and agricultural wells are based on a daily soil-moisture budget using local precipitation, land use, and evapotranspiration data (Appendix F). Basin groundwater production, which combines metered and unmetered production estimates, is reported to the closest 10 acre-feet. Unmetered production estimates currently account for approximately 60 percent of the total production in the Basin, of which agricultural irrigation is the greatest unmetered component. Potential uncertainty in Basin production has been estimated at +/- 100 acre-feet, or approximately 10 percent of the unmetered production component and five percent of the Sustainable Yield of the Basin (LOBP page 47; ISJ Group, 2015).

BASIN TOTAL 1971-2023 Groundwater Production Los Osos Groundwater Basin

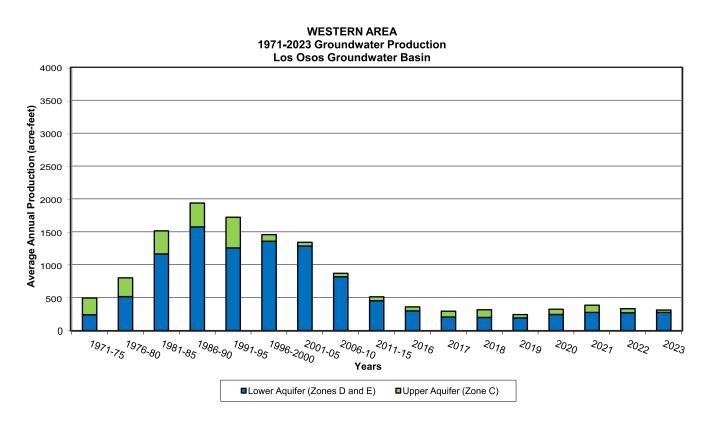
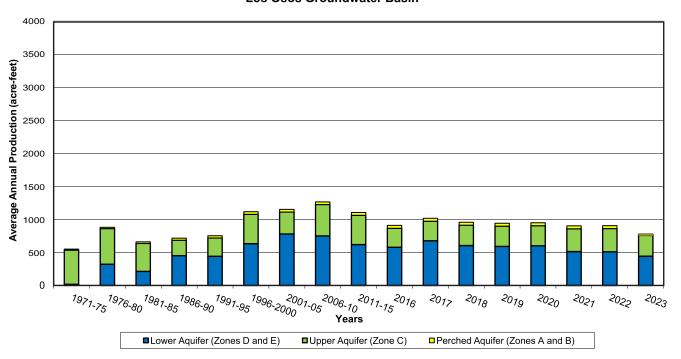



Figure 6
Basin Production 1971-2023
Basin Total and Western Areas
Los Osos Groundwater Basin
2023 Annual Report

CENTRAL AREA 1971-2023 Groundwater Production Los Osos Groundwater Basin

EASTERN AREA 1971-2023 Groundwater Production Los Osos Groundwater Basin

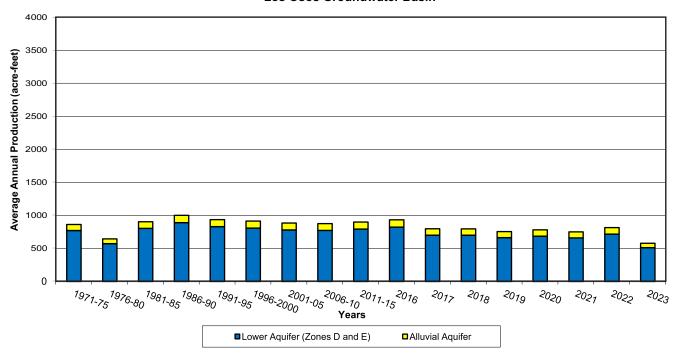
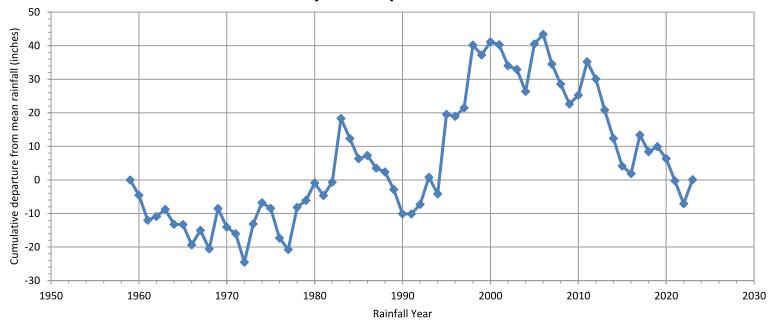


Figure 7
Basin Production 1971-2023
Central and Eastern Areas
Los Osos Groundwater Basin
2023 Annual Report

6. PRECIPITATION AND STREAMFLOW

Precipitation data are currently available from a County rain gage located at the former Los Osos landfill (Station #727). Continuous precipitation records for Station #727 are available beginning with the 2006 rainfall year (July 2005 through June 2006), and show that rainfall has averaged 16.88 inches, with a minimum of 6.83 inches in the 2014 rainfall year and a new maximum of 34.74 inches in the 2023 rainfall year. Records for Station #727 through the calendar year 2023 are included in Appendix G.

Historically, precipitation records at rain gage stations were compiled by the County for the LOCSD maintenance yard on 8th Street (Station #177), at the South Bay fire station on 9th Street (Station #197), and at two private volunteer stations (Station #144.1 in the Los Osos Creek Valley and Station #201.1 on Broderson Avenue). The longest active period of record in the vicinity is at the Morro Bay Fire Department (Station #152). A summary of precipitation data for these stations is presented in Table 15.


	Table 15. Active a	nd Former Precipitati	on Stations		
Station No.	Name	Name Period of Record (rainfall years)			
144.1	Bender	1955-1987	19.17		
152	Marra Day Fire Dent	1959-2023 (active)	16.04		
152	Morro Bay Fire Dept.	2006-2023 (active)	13.79		
177	CSA9 Baywood Park	CSA9 Baywood Park 1967-1980			
197	South Bay Fire	1975-2001	19.52		
201.1	Simas	21.16			
727	Los Osos Landfill	2006-2023 (active)	16.88*		

NOTE: *lower average due to short period of record that includes seven years of below normal rainfall.

Figure 8 shows the long-term cumulative departure from mean precipitation at Station #152. Note that between 2006 and 2023 (the period of record for Station #727), rainfall at Station #152 was averaging more than two inches per year below normal (Table 15). Once data for Los Osos Landfill Station #727 becomes more representative of long-term climatic conditions, it would be appropriate to use the gage in the cumulative departure from mean precipitation graph.

The U.S. Drought Monitor, a partnership of federal agencies, monitors drought conditions across the country based on various climatological indexes and data inputs. San Luis Obispo County started 2023 with extreme drought conditions in January. However, by end of the calendar year in December 2023 no drought conditions were reported due to the historic precipitation that occurred in 2023 (NDMC/USDA/NOAA, 2023).

Cumulative Departure from Mean Rainfall Morro Bay Fire Department 1959-2023

Rainfall per Water Year Morro Bay Fire Department

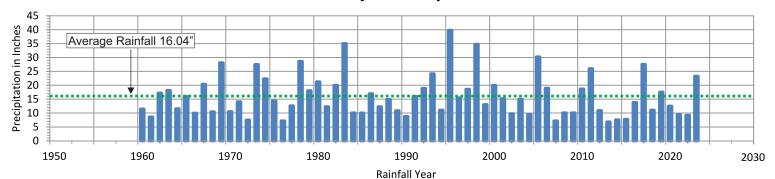


Figure 8 Cumulative Departure from Mean Rainfall at Morro Bay Fire Department Los Osos Groundwater Basin 2023 Annual Report

The Basin model is a steady-state numerical groundwater flow and transport model that assumes a long-term average annual rainfall of 17.3 inches across the Basin. As shown in the cumulative departure curve in Figure 8, the climate has been mostly dry since 2006, with a cumulative drop of 43 inches from the long-term average, equivalent to 2.5 inches per year below average. Station #727 records begin in 2006, therefore, the current average rainfall of 16.88 for that station is interpreted to be below the long-term average for the Basin.

Los Osos Creek drains the Clark Valley watershed. Streamflow on Los Osos Creek is monitored by a County gage (formerly Gage #6, now Sensor 751) at the Los Osos Valley Road bridge. The location has been gaged intermittently since 1976, with 18 years of reported flow records ending in 2001. The average flow measured on Los Osos Creek at the gage (drainage area of 7.6 square miles) was 3,769 acre-feet per year between 1976 and 2001 (San Luis Obispo County, 2005). Development of a rating curve for Sensor 751 to convert historical stage data into flow measurements was completed in 2023 (CHG, 2023a). CHG processed County stage data for 16 years between 2008 and 2023. When the 16 additional years of flow are added to the 18 years of historical flow data, the average annual flow at the gage is 3,128 acre-feet per year. A summary of the available annual streamflow data is in Appendix G.

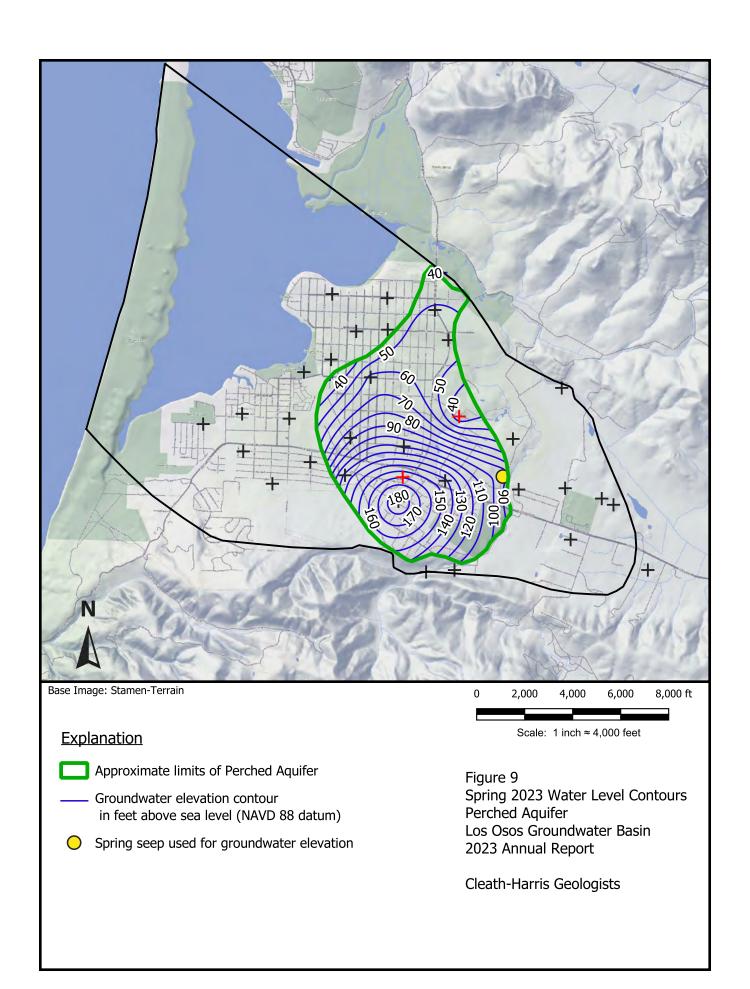
Streamflow was recorded at the gage for 217 individual days during the 2023 water year (October 1, 2022 to September 30, 2023). The dates and maximum stage value from Sensor #751 for the peak flow days in each month are listed below in Table 16.

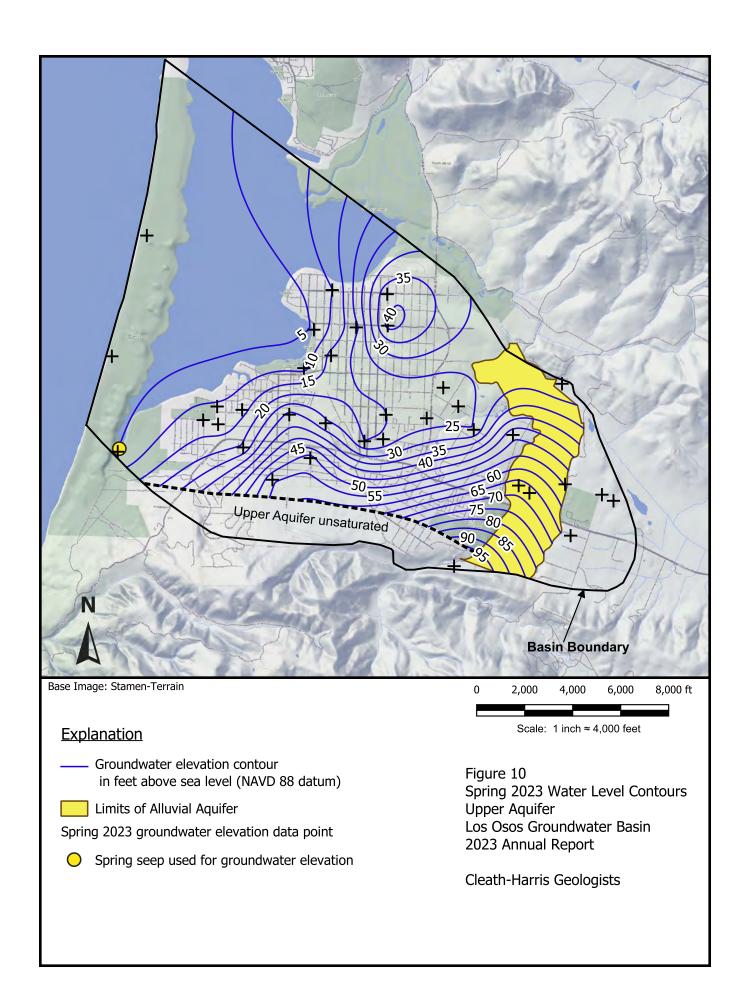
Table 16. Maximum Stream Stage for Los Osos Creek, 2023 Water Year										
Date Maximum Stream Stage County Sensor #75 (feet)										
12/31/2022	7.73									
1/9/2023	10.8									
2/27/2023	4.37									
3/14/2023	6.25									
4/22/2023	3.31									
5/4/2023	2.51									
6/6/2023	2.31									

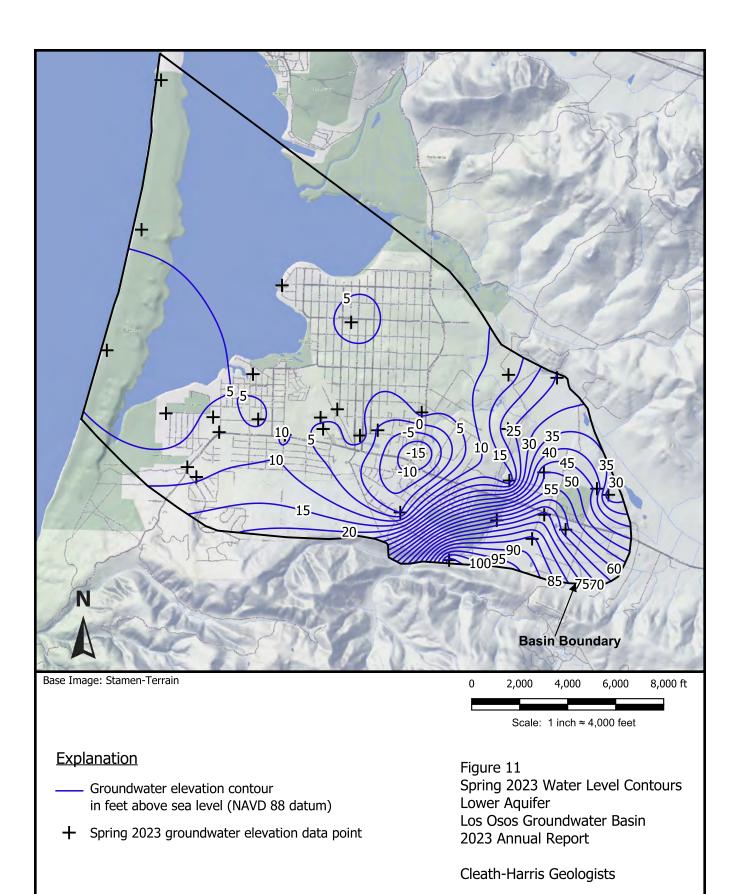
The estimated stream flow on Los Osos Creek at Los Osos Valley Road in the 2023 water year was 15,426 acre-feet, almost five times the average annual flow. Los Osos Creek stream flow records are useful for Basin water balance and Sustainable Yield interpretation, for the analysis of potential benefits from recycled water discharges to the creek, and for Basin model calibration. Graphs of the available stream stage data over time for water years 2011 through 2023 are included in Appendix G.

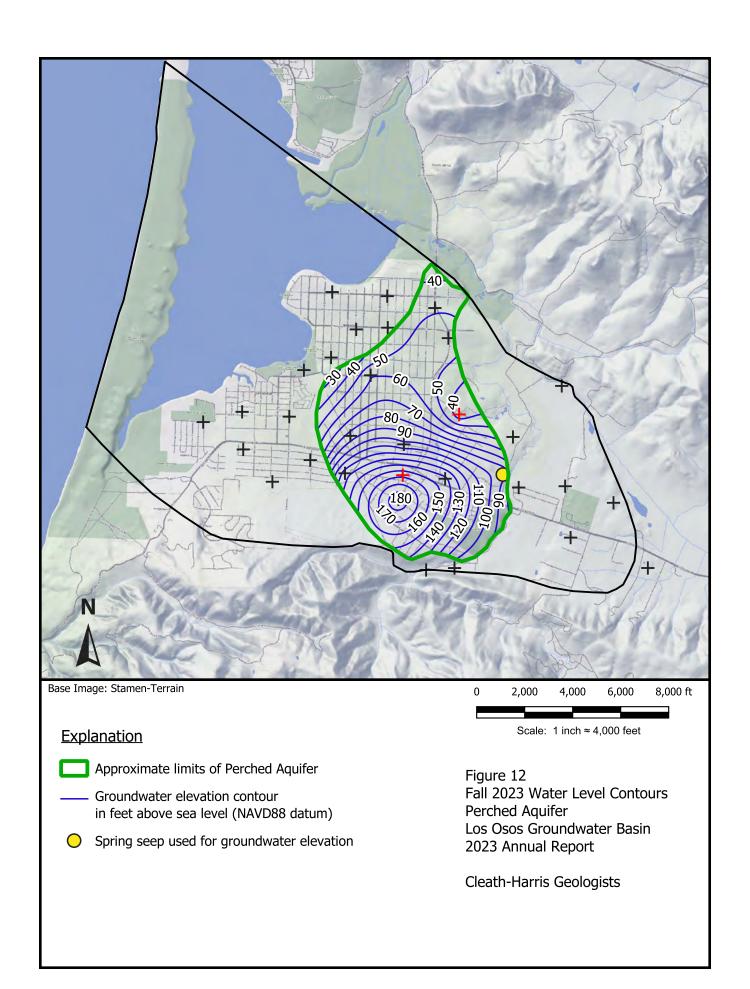
Warden Creek (Figure 1) drains approximately nine square miles of the eastern Los Osos Valley. This creek flows along 3,700 feet of the northern Basin boundary, at low invert elevations (less than

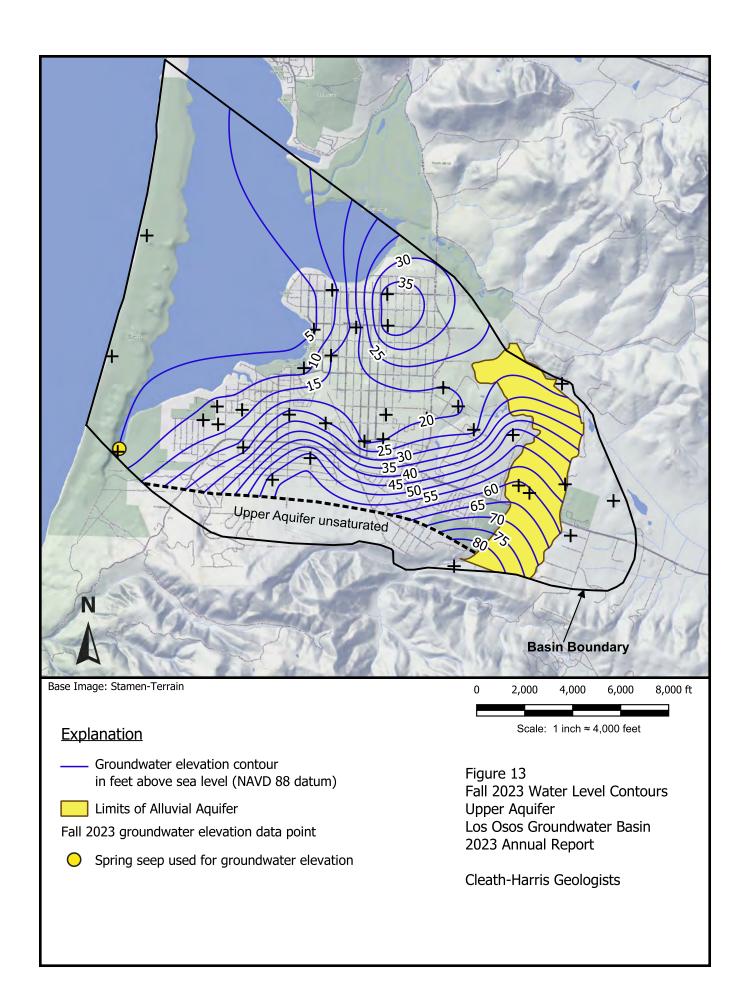
20 feet above sea level) in an area underlain by shallow bedrock. The U.S. Geological Survey reported winter flows in Warden Creek similar to Los Osos Creek, but with greater baseflow during the summer, because Warden Creek serves as a drain (point of groundwater discharge) for shallow groundwater at the north end of the Los Osos Creek floodplain (Yates and Wiese, 1988).

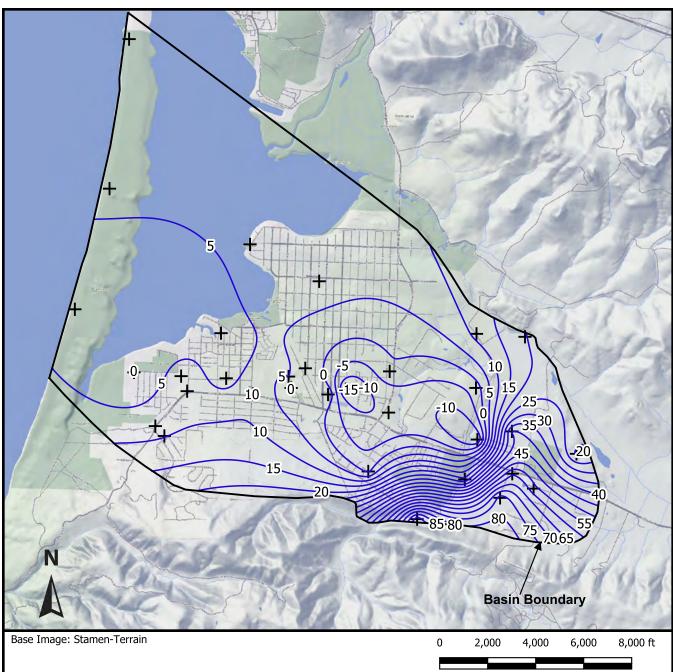

7. DATA INTERPRETATION


Groundwater level and groundwater quality data for 2023, together with selected historical data, have been used to develop the following information:


- Groundwater elevation contour maps for the Perched Aquifer, Upper Aquifer (with Alluvial Aquifer), and Lower Aquifer for both Spring and Fall 2023 conditions.
- Water level hydrographs for wells representative of aquifers in the Western, Central, and Eastern Areas of the Basin.
- The lateral extent of seawater intrusion and the Fall 2023 position of the seawater intrusion front.
- Estimates of groundwater in storage for Spring and Fall 2023, including amount above mean sea level.
- Estimates of changes to groundwater in storage from Spring 2022 to Spring 2023, including the volume of seawater intrusion.
- Basin Yield Metric, Basin Development Metric, Water Level Metric, Chloride Metric, and Nitrate Metric.
- Upper Aquifer Water Level Profile


7.1 Water Level Contour Maps


Water level contour maps for Spring 2023 are presented in Figures 9, 10, and 11 for the Perched Aquifer, Upper Aquifer with Alluvial Aquifer, and Lower Aquifer, respectively. Corresponding water level contour maps for Fall 2023 are presented in Figures 12, 13, and 14. The water level elevations are shown at a 5-foot contour interval for the Upper and Lower Aquifers, and a 10-foot contour interval for the perched aquifer, based on the ordinary kriging interpolation method, which provides a best (least-squares) estimate of values at unmeasured points based on the mapped values.



Scale: 1 inch ≈ 4,000 feet

Explanation

- Groundwater elevation contour in feet above sea level (NAVD 88 datum)
- + Fall 2023 groundwater elevation data point

Figure 14 Fall 2023 Water Level Contours Lower Aquifer Los Osos Groundwater Basin 2023 Annual Report

Water level data available from private irrigation and domestic wells were used in the development of the water level contour maps, although these water levels are not listed in the data tables in this report (Table 3 through 8). Private well participation in the monitoring program during 2023 was approximately 67 percent (23 out of 33 wells in Spring, 22 out of 33 in the Fall). With completion of the 2021 wellhead elevation survey, all of the LOBP monitoring network wells that are used for water level monitoring now have NAVD 88 elevations as reported by a licensed land surveyor.

Perched Aquifer water level contour maps (Figures 9 and 12) show the highest groundwater elevations at Well FW31 in the Bayridge Estates (at the Bayridge Estates recycled water disposal field), with a radial direction of groundwater flow from the higher topographic elevations to lower elevations. Overall Perched Aquifer groundwater levels declined approximately 2.3 feet from Spring to Fall 2023, which is normal (water levels typically decline in the fall and recover in the spring). The average seasonal water level decline in the Perched Aquifer over the last five years has been 2.3 feet, followed by water level recovery in the spring.

Contour maps for the Upper Aquifer and Alluvial Aquifer (Figures 10 and 13) show the highest groundwater elevations are at the southern edge of the Los Osos Creek alluvial valley. The general direction of groundwater flow is to the northeast along the creek valley and to the northwest toward the Morro Bay estuary. Significant features include a pumping depression interpreted to be present in the area of downtown Los Osos, and a groundwater high interpreted to be present beneath dune sand ridges in Baywood Park. Upper Aquifer groundwater elevation contours averaged approximately 1.8 feet of water level decline from Spring to Fall 2023, which is normal. The average seasonal water level decline in the Upper Aquifer over the last five years has been 2.2 feet, followed by water level recovery in the spring.

Contour maps for the Lower Aquifer (Figures 11 and 14) show the highest groundwater elevations are at the southern edge of the Los Osos Creek alluvial valley and near the eastern Basin boundary. The steep hydraulic gradient between the Upper Creek Valley and downtown Los Osos suggests significant permeability restrictions between these two areas, possibly fault related (Yates and Weise, 1988; Cleath & Associates, 2005). Groundwater flow in the Lower Aquifer is generally toward Central Area pumping depressions which are below sea level. Lower Aquifer groundwater elevations averaged approximately 3.4 feet of water level decline from Spring to Fall 2023, which is normal. The average seasonal water level decline in the Lower Aquifer over the last five years has been 4.3 feet, followed by water level recovery in the spring.

7.2 Water Level Hydrographs

Water level hydrographs for representative First Water, Upper Aquifer, and Lower Aquifer wells have been compiled for the Western and Central Basin Areas, including one of the Lower Aquifer wells in the Dunes and Bay Area. These wells present the general water level trends. The hydrographs are shown in Figures 15, 16, and 17, respectively.

Water Level Hydrographs First Water

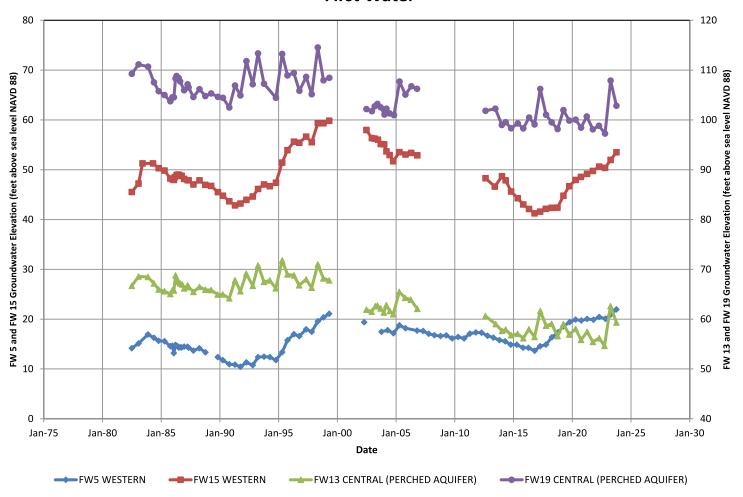


Figure 15 Water Level Hydrographs Perched Aquifer / First Water Los Osos Groundwater Basin 2023 Annual Report

Water Level Hydrographs Upper Aquifer

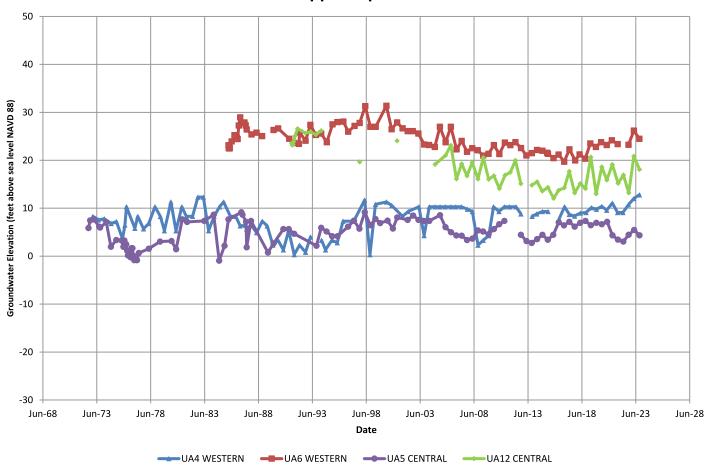


Figure 16
Water Level Hydrographs
Upper Aquifer
Los Osos Groundwater Basin
2023 Annual Report

Water Level Hydrographs Lower Aquifer

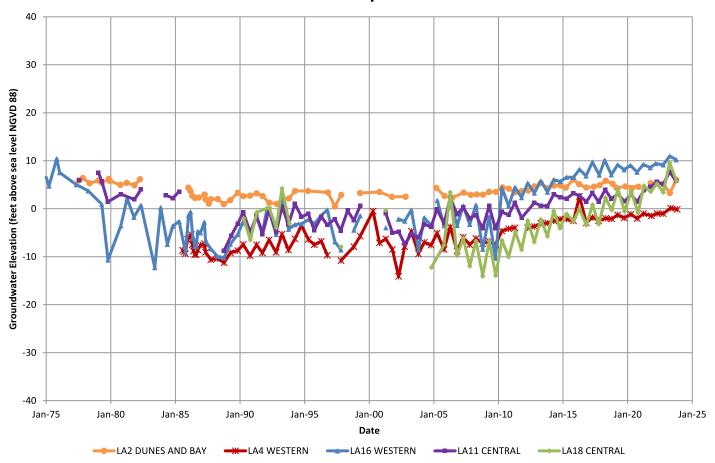


Figure 17 Water Level Hydrographs Lower Aquifer Los Osos Groundwater Basin 2023 Annual Report

The Spring-to-Spring water level trends, based on representative hydrographs, shown generally declining water levels in First Water and the Upper Aquifers since the wet period in the late 1990's, with recovery beginning in 2017. By Spring 2023, Perched Aquifer and Upper Aquifer water levels had recovered to non-drought conditions. For Lower Aquifer wells, water levels have been generally rising since 2010, and the Spring-to-Spring water level trend over the last ten years (2013-2023), based on representative Central and Western wells, was an increase of 0.50 feet of rise per year (Figure 17).

Hydrographs for sixteen wells equipped with pressure transducers are shown in Appendix H. Transducer locations are shown in Figures 2, 3, and 4. The transducers have been installed to provide greater detail of water level trends and fluctuations. There are three First Water wells, two Upper Aquifer wells, and eleven Lower Aquifer wells equipped with transducers. Seven of the transducer hydrographs were initiated in 2016-17, and two more were initiated in 2021. Data from these wells have been interpreted to show the following trends:

• FW6 is screened in the Upper Aquifer near the Broderson leach field in the Western Area of the Basin. Starting in June 2017, water levels have shown a rise of approximately 23 feet through June 2023 (Appendix H). The rise in water level is credited to groundwater mounding on the regional aquitard beneath the Broderson leach field. This mounding is expected to increase the downward hydraulic gradient and promote leakage through the regional aquitard, which will help to mitigate seawater intrusion in the Western Area. Beginning in mid-2022, the hydrograph at FW6 shows an undulating behavior in the water levels, which is interpreted to indicate that the Broderson groundwater mound is reaching stabilization.

There is another monitoring well at the Broderson site that was damaged and lost (buried) during tree removal for leach field construction. FW7, if salvaged, could contribute valuable information on mound development. The general location of FW7 is known, and efforts to relocated and salvage the well were recommended in the 2022 Annual Report.

- FW10 is screened at the top of the Upper Aquifer in the Central Area of the Basin, while UA4 and UA10 are screened at the base of the Upper Aquifer in the Western Area and Central Area of the Basin, respectively. These wells have displayed seasonal fluctuations of two to five feet (i.e., lower elevations during the summer and higher elevations during the winter and spring), including one to two feet of interference related to nearby pumping wells. Overall water level trends have been relatively flat to rising slightly since 2016 (Appendix H).
- FW27 is screened in the Alluvial Aquifer in the Eastern Area of the Basin. The well was equipped with a transducer in April of 2017, near the seasonal high-water period, and has shown seasonal fluctuations since then between approximately 15 and 40 feet (Appendix H). The relatively large seasonal fluctuations are attributable to the well's location in the upper Los Osos Creek alluvial valley (Figure 2), where the majority of seasonal recharge from stream seepage in the Basin occurs.

- LA37 is screened in the Lower Aquifer in the Eastern Area of the Basin. It displays a seasonal fluctuation of approximately six to seven feet, including interference related to nearby pumping wells. Overall water level trends have been flat since 2017, with a general rise of approximately five feet in the winter of 2023 (Appendix H).
- LA13 displays a seasonal fluctuation of approximately five to seven feet. Overall water level trends have been mostly rising since 2016 (Appendix H). In 2022, LA13 underwent modification in order to stabilize the old steel casing and to convert it into a monitoring well. It remains screened in the Lower Aquifer in the Central Area of the Basin; but a liner was installed to isolated Zone E of the Lower Aquifer. The well completion (modification) report and construction diagram were presented in the 2022 Annual Report (CHG, 2023b).

The remaining seven transducers were installed in 2021, and have almost two years of recorded data. The y-axis (vertical scale) of the hydrographs at the wells with newly installed transducers are set to 10 feet (instead of 50 feet), due to the short monitoring interval. The hydrographs from these wells are interpreted to show the following trends:

- Tidal influence is observed in the hydrographs for LA11, LA40 and LA41, which are dedicated Lower Aquifer monitoring wells close to the bay. The tidal influence is interpreted to be a result of pressure loading and unloading to aquifers underlying the bay as the tides ebb and flow. Overall short-term trends, besides the dominant tidal effects and seasonal fluctuation, are stable to rising water levels in LA11; stable to rising in LA40, and stable water levels in LA41. According to the transducer recording, LA11 may have been flowing artesian for a brief period in early 2023. If so, this would likely be the first time the well has flowed in over 40 years (semi-annual hydrograph in Figure 17).
- LA6, LA14, LA16, and LA19 all show slightly rising water levels as of December 2023.

7.3 Seawater Intrusion

The estimated position of the Fall 2023 seawater intrusion front in Lower Aquifer Zone D is shown in Figure 18, along with selected prior years. There is insufficient information to represent current Lower Aquifer Zone E intrusion in a plan view figure, but a generalized plan view interpretation of Zone E intrusion using data from various years is included in Figure 18. The seawater intrusion front corresponds to the position of the 250 mg/L chloride concentration isopleth, based on water quality samples from Lower Aquifer wells.

The addition of LA41 (Lupine Avenue Zone D) in 2019 contributed to a refinement of the location of the seawater intrusion front in Zone D along the bay, compared to prior years, and resulting in a more westerly (improved) position compared to previous years (Figure 18). Based on the contours, seawater intrusion in Zone D has been relatively stable between 2022 and 2023, although chloride at one of the key locations (LA10) was lower than normal in Fall 2023 due to Upper

Aquifer influence, so the value from Fall 2022 was substituted. Zone E intrusion has advanced inland of LA11, and appears to be moving toward LA12, although a review of ion ratio trends since 2004 shows no indication of intrusion precursors at LA12. Figure 18 is a simplification of Basin conditions, and the calculated position of the intrusion front and associated velocity of the intrusion front movement can vary significantly from year to year, and from Spring to Fall due to localized chloride fluctuations, particularly at well LA10. Furthermore, although the seawater intrusion front shown in Figure 18 is generally representative of Zone D, LA10 is completed in both Lower Aquifer Zone D and the top of Zone E.

Contouring for the intrusion front (250 mg/L chloride isopleth) shown in Figure 18 uses the ordinary kriging interpolation method, which provides a best (least-squares) estimate of values at unmeasured points based on the mapped values. Chloride concentrations at Dunes and Bay Area wells LA2 and LA3 were not analyzed in 2023, but in general they are two orders of magnitude greater than the Western Area wells and are not used for contouring the intrusion front in the Western Area. The ordinary kriging interpolation method involves weighted linear interpolation, whereas the chloride concentrations approaching wells LA2 and LA3 on the sandspit do not appear to follow linear gradients.

The location of the intrusion front is also shown in cross-section on Figure 19 and Figure 20 (cross-section alignments shown in Figure 1). Figure 19 (Basin cross-section B'B') runs from the sandspit to the eastern Basin boundary. The intrusion front in the Upper Aquifer remains beneath the sandspit, based on the triennial geophysics performed at 13M1 (see Section 4.3) and on water quality data from active bayfront municipal supply well UA3. In Zone E, the intrusion front reached LA15 (Palisades Avenue) in 2013, after which the zone was sealed off from production. There has been no evidence of further inland movement west of Palisades Avenue along the B-B' cross-section, based on the latest geophysics at LA14 (Section 4.3) and on water quality monitoring at Zone E monitoring well LA32 (10th Street). Inland movement of the Zone E front toward LA11, however, has been detected, as LA11 had an increase in chloride concentration from 279 mg/L in October of 2022 to 350 mg/L in October of 2023 (Figure 20). Chloride concentrations at LA40 increased between 2019 and 2021, remained stable through Spring of 2023, and then increased to the highest concentration so far in Fall of 2023 at 3,200 mg/L. Seawater intrusion into Zone E is a significant threat to basin sustainability and has been for decades.

Figure 20 (section E-E') runs from Morro Bay on the north to the Los Osos fault on the south, and crosses section B-B' at Los Osos Valley Road (Figure 1). Zone D intrusion is interpreted in section E-E' to have reached LA10 near the middle of the basin, with the lateral extent along the section constrained by LA40 on the north, and by the rising limb of the syncline on the south. The intrusion front is not present along the Basin synclinal axis at the new Lupine Avenue nested monitoring well location, where the chloride concentration in LA41 is 48 mg/l.

In Zone E, seawater intrusion is interpreted to be laterally pervasive in the Western Area, based on the elevated concentration in LA40 (Lupine Avenue) and an increasing trend in chloride concentrations at LA11 (Pasadena Drive) which indicates a worsening condition over time. Additional deep monitoring wells are needed to further define the extent and movement of intrusion

Explanation

Scale: 1 inch ≈ 1,500 feet

Cross-section alignment (Figures 5 and 19)

Bulletin 118 Basin Boundary

Bulletin 118 Basin Boundary

Well with **Zone D** and/or **Zone E** chloride concentration (mg/L) (Value for Fall 2023 except where year noted)

Seawater intrusion front in Western Area (250 mg/L chloride isopleth)

---- Winter 2005 - Zone D (Pre LA40/41)

——— Fall 2016 - Zone D (Pre LA40/41)

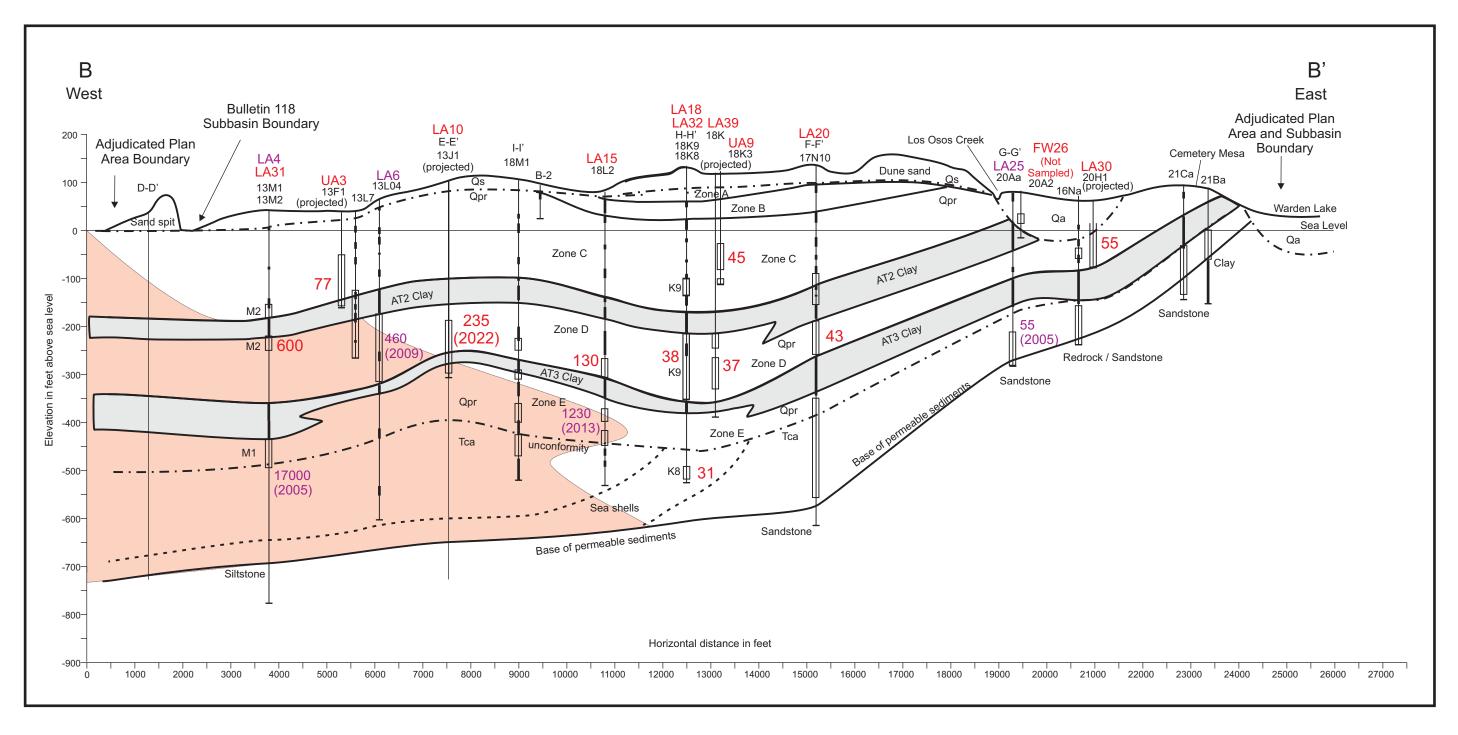
— Fall 2020 - Zone D

— Fall 2021 - Zone D

— Fall 2022 - Zone D

--- Fall 2023 - Zone D

---- Zone E (Generalized with data from various years)


Figure 18 Seawater Intrusion Front Western Area Lower Aquifer Zone D and E

Los Osos Groundwater Basin 2023 Annual Report

Cleath-Harris Geologists

PUBLIC DRAFT

^{*} LA14 Zone E value based on geophysics

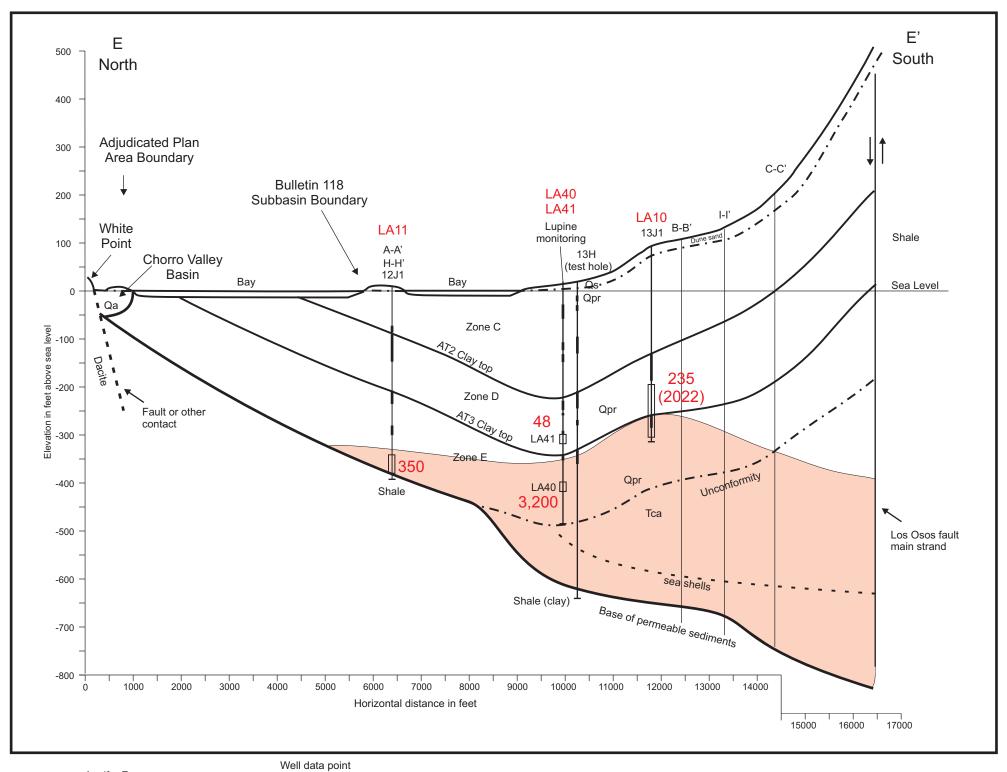
Aquifer Zones: Zone A - Perched Aquifer Zone B - Transitional Aquifer Zone C - Upper Aquifer Zone D - Lower Aguifer (shallow) Zone E - Lower Aquifer (deep)

Well data point 18M1 Well ID Formation: Qa - alluvium **←**Clay layer Qs - dune sand Qpr - Paso Robles Formation ←Well screen Tca - Careaga Formation Clay layers not shown at projected wells

Cross-section alignment shown in Figure 1

LA31 - LOBP Monitoring Network ID

130 - Chloride concentration in mg/L (Fall 2023) *LA10 is a repeated result from 2022; 2023 samples contaminated by borehole leakage



Estimated extent of seawater intrusion (Fall 2023)

460 - Historical Chloride concentration in mg/L (year listed)

Figure 19

Seawater Intrusion Front Cross-Section B-B' Los Osos Groundwater Basin 2023 Annual Report

Aquifer Zones: Zone A - Perched Aquifer

Zone B - Transitional Aquifer Zone C - Upper Aquifer

Zone D - Lower Aquifer (shallow) Zone E - Lower Aquifer (deep)

12J1 Well ID Clay layer ←Well screen

Formation: Qa - alluvium Qs - dune sand Qpr - Paso Robles Formation Tca - Careaga Formation

Cross-section alignment shown in Figure 1

LA31 - LOBP Monitoring Network ID

235 - Chloride concentration in mg/L (Fall 2023)
*LA10 is a repeated result from 2022; 2023 samples contaminated by borehole leakage

Estimated extent of seawater intrusion (Fall 2023)

Figure 20

Seawater Intrusion Front Cross-Section E-E' Los Osos Groundwater Basin 2023 Annual Report

in both Zone D and Zone E. Summary tables with historical water quality for individual Lower Aquifer wells are included in Appendix I for reference.

Seawater intrusion in Zone E is anticipated to be halted through a combination of reduced pumping in the Western Area together with increased recharge across the regional aquitard, following development of the groundwater mound beneath the Broderson disposal site. The redistribution of pumping and development of the Broderson groundwater mound are both still in progress, although the mound appears to be reaching a stabilized condition in the Upper Aquifer in 2023.

Recommendations for well modifications and new Lower Aquifer well locations were provided in a draft 2022 Technical Memorandum (CHG, 2022b). To date, one well modification has been completed (LA13), and one new Lower Aquifer monitoring well cluster has been completed (Skyline Drive). LA13 was sampled in 2023 and showed no seawater intrusion at that location in Zone E (Figure 18). The new Skyline monitoring well cluster will be sampled in Spring 2024. There are two more recommended well modifications (LA 14 and LA16) and up to three additional new well locations that will help fill data gaps in characterizing and monitoring Zone E intrusion.

7.4 Groundwater in Storage

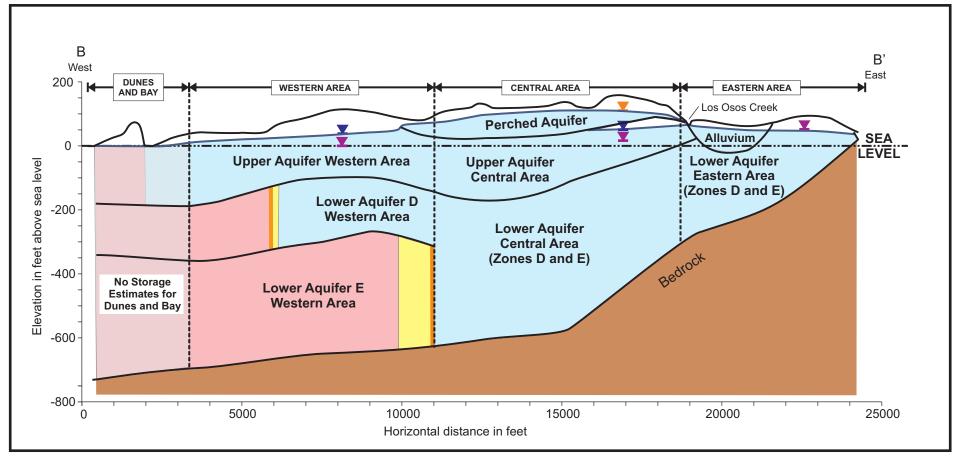
Groundwater in storage for Basin areas and aquifers has been estimated through a systematic approach of water level contouring, boundary definition, volume calculations, and aquifer property estimation. The methodology was developed to facilitate change in storage calculations from year to year. An example storage calculation for the Eastern Area is shown in Appendix J.

There are uncertainties with groundwater storage estimates. A sensitivity analysis was performed for the 2017 Annual Report (CHG, 2018a). The analysis evaluated variables related to tape bias/survey error, specific yield error, and data gaps. Results of the sensitivity analysis indicated the potential error for storage and change in storage was within 20 percent (+/- 20 percent) of the estimated storage values for most variables and storage compartments.

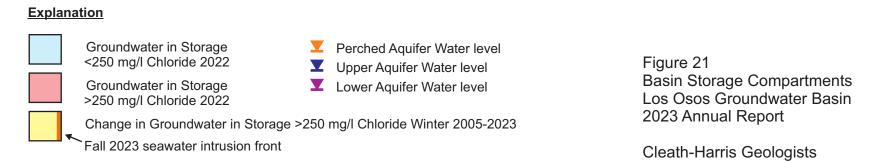
Storage estimates were performed for Spring and Fall 2023 and included separate estimates for the following areas and aquifers shown in Figure 21:

- Perched Aquifer
- Western Area Upper Aquifer
- Western Area Lower Aquifer
- Central Area Upper Aquifer
- Central Area Lower Aquifer
- Eastern Area Alluvial and Lower Aquifer

The various storage compartments are shown conceptually in Figure 21. Storage estimates for the Lower Aquifer in the Western and Central Areas combine fixed pore space volume and confined pore space volume components. The fixed volume component of storage is based on the specific yield of the aquifer sediments and is fixed because the Lower Aquifer is never dewatered in the Western and Central Areas. The confined component adds a relatively small volume of transient storage associated with the aquifer pressure and is based on the storativity of the aquifer. Specific yield values for aquifer zones are shown in Table 17. Detailed lithologic log correlations were provided in the 2018 Annual Report (CHG, 2019b).


Table 17. Estimated	Specific Yield Values				
Aquifer Zone	Specific yield ¹ (percent of volume)				
Zone A&B	12.8				
Zone C	10.2				
Zone D	8.8				
Zone E	10.5				
Qal ²	13.0				
Zones D&E ³	9.8				
Qal, Zones D&E 4	10.1				

Notes: ¹ Weighted specific yield values based on log correlations shown in the 2018 Annual Report.


²Los Osos Creek Valley alluvium

³Used for Central Area storage calculations

⁴ Used for Eastern Area storage calculations

Cross-section alignment shown in Figure 18

Beginning in 2018, Basin storage calculations have been based on specific yields for each individual aquifer zone. Confined and semi-confined aquifer storativity values are typically orders of magnitude less than the specific yield. The average specific yield for Basin sediments is estimated to range from 9.8 percent to 13 percent (Table 17). The storativity value used for the confined aquifer in the Western and Central Areas is estimated at 0.0008 (Cleath & Associates, 2005).

The storage component of the Lower Aquifer in the Western Area Zone D represents the groundwater volume with a chloride concentration of 250 mg/L or less. Zone E in the Western Area is excluded from the storage calculations, because chloride concentrations are interpreted as mostly above 250 mg/L (Figure 18 and Figure 21).

All storage calculations were based on upper and lower contoured surfaces specific to the aquifer (fixed volume and confined volume were combined). For example, elevation contours on the base of the Perched Aquifer were used as the lower bounding surface for Perched Aquifer storage calculations, so no storage was assigned to unsaturated pore space between the base of the perched aquifer and saturated Upper Aquifer sediments (Figure 21). Appendix J includes a list of wells used for 2023 groundwater elevation contours and associated upper surfaces for storage calculations. Fixed surfaces used for storage calculations (base of perched aquifer, base of Upper Aquifer, base of Lower Aquifer Zone D, and base of permeable sediments were developed from existing contour maps and control points presented in prior reports (Cleath & Associates, 2003, 2005; CHG, 2016a). Table 18 summarizes the estimates of fresh groundwater in storage for 2023.

Та	Table 18. Groundwater in Storage Spring and Fall 2023 (<250 mg/L Chloride)											
Basin Area	Aquifer	Zone	Spring	g 2023	Fall 2023							
240331 121 04		2020	Total	Above Sea Level	Total	Above Sea Level						
			ACRE-FEET									
Western and	Perched	A, B	6,300	6,300	6,000	6,000						
Central	Upper	С	29,600	7,700	28,900	7,000						
Western	Lower ¹	D^2	16,200	<10	16,000	<10						
Central	Lower ¹	D, E	55,100	<10	55,100	<10						
Eastern	Alluvial and Lower	Alluvial, D, E	19,900	5,400	19,400	4,900						
	TOTAL		127,100	19,400	125,400	17,900						

NOTES: Includes fixed and confined storage.

Total estimated fresh groundwater in storage for the Basin (excluding Dunes and Bay Area) averaged 127,100 acre-feet in Spring 2023, with an estimated 19,400 acre-feet above sea level (Table 18). There was a calculated net seasonal storage decline of 1,700 acre-feet between Spring 2023 and Fall 2023, with 200 acre-feet of that being a loss of freshwater storage in Lower Aquifer

²Western Area Zone E not included due to chloride>250 mg/L.

Zone D. Changes to freshwater storage in Zone D are based on shifts in the position of the 250 mg/L contour line as shown in Figure 18 (results for Fall monitoring events shown). Storage losses are recoverable.

There are approximately 90,000 acre-feet of fresh groundwater in storage within the Lower Aquifer in the Western Area Zone D and Central Area Zones D and E (Table 18). Because groundwater levels in the Lower Aquifer within the Western and Central Areas average more than 100 feet above the top of the aquifer, dewatering is unlikely, and this volume of storage will only change with movement of the seawater intrusion front. The Lower Aquifer storage includes a relatively small component (less than 200 acre-feet) of confined pore space volume, representing water that is available without dewatering any portion of the Lower Aquifer (the pressure component). Water is relatively incompressible, so once the pore spaces of an aquifer have been filled, substantial confining pressure is required to further increase the storage volume. Conversely, there is a much greater drop in aquifer water levels for storage withdrawals under confined conditions, compared to unconfined conditions. This smaller storage volume assumes a confined aquifer storativity of 0.0008, compared to the unconfined specific yields of 0.098 to 0.13. Table 19 compares Spring 2022 groundwater in storage with Spring 2023.

Ta	Table 19. Change in Storage Spring 2022 to Spring 2023 (<250 mg/L Chloride)											
Basin Area	Aquifer	Zone	Sprin	g 2022	Change from Spring 2022 to Spring 2023							
	1		Total	Above Sea Level	Total	Above Sea Level						
				E-FEET								
Western	Perched	A, B	5,500	5,500	800	800						
and Central	Upper	C	28,700	6,800	900	900						
Western	Lower ¹	D^2	16,200	<10	0	0						
Central	Lower ¹	D, E	55,100	<10	0	0						
Eastern	Alluvial and Lower	Alluvial, D, E	19,000	4,500	900	900						
	TOTAL		124,500	16,800	2,600	2,600						

NOTES: Includes fixed and confined storage.

As reported in Table 19, there was no change in freshwater storage in the Lower Aquifer in the Western and Central Areas between Spring 2022 and Spring 2023. There was a gain of 2,600 acre-feet in fresh water storage in other areas of the Basin over the same period, resulting in a net gain in Basin storage between Spring 2022 and Spring 2023. Note that Spring to Spring storage is a measure of annual change, while Spring to Fall storage is a measure of seasonal fluctuation.

² Western Area Zone E not included due to chloride>250 mg/L.

Groundwater in storage above sea level is a measure of basin health and sustainability. Basin production from both the Upper and Lower Aquifers needs to be replenished over time from storage above sea level, otherwise seawater intrusion will advance inland. Most of the groundwater stored in the Lower Aquifer is below sea level. Therefore, to be sustainable, water pumped from the Lower Aquifer in the Western and Central areas needs to be replenished by an equal amount of recharge from the Upper Aquifer, boundary inflows, or inflows from the Eastern area where storage is mostly above sea level. The Basin model can simulate these dynamic processes, but tracking groundwater in storage from monitoring data, similar to tracking associated water levels or water quality, also reflects these complex processes.

Storage estimates show the volume of groundwater in storage has been relatively stable in the Basin over the last five years, despite below average rainfall. Table 20 shows the Spring and Fall storage estimates from 2018 to 2023. Rainfall totals are based on the San Luis Obispo County rainfall year; for example, rain year 2018 would be totaled from July 1, 2017 to June 30, 2018.

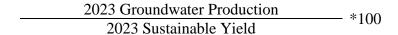
Table 20. Groundwater in Storage above Sea Level					
D-: X/	Spring	Fall	Rainfall (Sta. 727)*		
Rain Year	acre-feet		inches		
2018	17,000	15,100	13.63		
2019	17,600	16,600	23.82		
2020	17,700	15,800	13.60		
2021	17,400	15,200	13.94		
2022	16,800	15,000	13.58		
2023	19,400	17,900	34.74		

*SLO County Rainfall Year reporting (July1 – June30)

The seasonal change in groundwater storage above sea level (spring to fall) during dry years ranges from 1,800 acre-feet to 2,200 acre-feet, which appears reasonable considering that there is a similar amount of annual groundwater production in the basin. The 2,600 acre-feet of increase in estimated groundwater storage above sea level from Spring 2022 to Spring 2023 greatly exceeds the largest prior increase of 600 acre-feet between Spring 2018 and Spring 2019 (Table 20).

Water levels rose between Spring 2022 and Spring 2023 across the basin in all aquifers, averaging approximately 5 feet higher in the Perched Aquifer, 2.8 feet higher in the Upper Aquifer, and 3.5 feet higher in the Lower Aquifer. No increase in freshwater storage, however, is reported in the Lower Aquifer in the Western and Central Areas (Table 19). This is because (as described earlier) water level changes in these parts of the Lower Aquifer are considered changes in confined aquifer pressure, with a storage coefficient of 0.0008. For example, assuming 3.5 feet of Lower Aquifer water level increase in the Western Areas (roughly 1,100 acres), the resulting change in storage would be an increase of 3 acre-feet, which is not enough to register on the storage tables.

7.5 Basin Metrics


LOBP Section 1.3.1 established two methods for measuring progress in management of seawater intrusion (ISJ Group, 2015): one based on comparing annual groundwater extractions with the estimated Sustainable Yield of the Basin as calculated by the Basin numerical groundwater model, and one based on evaluating water level and water quality data from the LOBP Groundwater Monitoring Program. The first method involves the Basin Yield Metric and the Basin Development Metric, while the latter method involves the Water Level Metric, The Chloride Metric, and the Nitrate Metric.

One of the components used to calculate the Basin Yield Metric is the Sustainable Yield. On October 27, 2021, the BMC considered and adopted a revised methodology for estimating Sustainable Yield, along with a Sustainable Yield for Year 2022. The Sustainable Yield for 2021 and prior years was estimated (using the Basin model) as the maximum amount of water that may be extracted from the Basin with no further inland advance of the front (i.e. a stationary front under steady-state conditions) and with none of the active wells producing water with chloride concentration in excess of 250 mg/L (ISJ Group, 2015). The updated methodology adopted by the BMC adds the condition that no further inland advance is allowed from threshold lines drawn parallel to the coast that represent the 2021 position of the seawater intrusion front in the Lower Aquifer. In accordance with the Stipulated Judgement Section 4.2, the BMC used the updated methodology to adopt a Sustainable Yield value for 2022.

Based on developed purveyor infrastructure capacity for year-end 2021, along with the updated methodology, a Sustainable Yield of 2,380 acre-feet was approved by the BMC, and has been in use since 2022. Developed purveyor infrastructure capacity for year-end 2022 did not change from 2021, so the Sustainable Yield remains unchanged at 2,380 acre-feet.

7.5.1 Basin Yield Metric

The Basin Yield Metric compares the actual amount of groundwater extracted in a given year with the estimated Sustainable Yield of the Basin under then-current conditions. Sustainable Yield for Year 2023 was estimated, using the Adaptive Method and the Basin model, as the maximum amount of groundwater that may be extracted from the Basin with a stationary seawater intrusion front at a position no further inland than the 2021 position, and with none of the active wells producing water with chloride concentration in excess of 250 mg/L (CHG, 2022). A chloride concentration of 250 mg/L is the recommended limit for drinking water (one-half of the Secondary Maximum Contaminant Level Upper Limit of 500 mg/L). Further assumptions for the Basin Yield Metric in 2023 are that the Broderson mound is at 50 percent development (CHG 2022aD, Appendix M) and the long-term rainfall average for the Basin is 17.3 inches per year. The Basin Yield Metric for 2023 is a ratio expressed as follows:

Groundwater production in 2023 was 1,650 acre-feet. The Sustainable Yield of the Basin with the infrastructure in place at year-end 2022 is 2,380 acre-feet¹, and the resulting Basin Yield Metric for 2023 is 69. The LOBP objective for the Basin Yield Metric is 80 or less, and has been achieved in 2023. Approval of the Annual Monitoring Report by the BMC does not constitute unanimous approval of actions listed under Section 5.11.4 (Approval Requirements) of the Stipulated Judgment or setting the Sustainable Yield for a given year. These actions require a separate action and unanimous approval by the BMC.

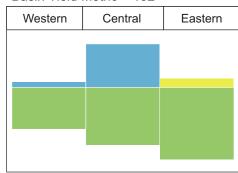
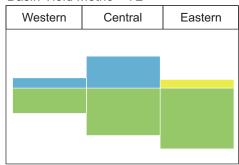
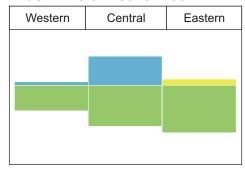

The estimated Sustainable Yield is not just a volume of water that can be pumped from anywhere in the basin, however. Sustainability is achieved through a balanced distribution of groundwater pumping across the Basin, both vertically and laterally, that maintains a stationary seawater front, with no active well producing water with chloride concentrations above 250 mg/L. Long-term climatic conditions are incorporated into the estimated Sustainable Yield.

Figure 22 compares the Basin Yield Metric and area production in the Basin. The Basin Yield Metric has dropped from an average of 106 between 2010 and 2014 to 69 in 2023. The current Program C development scenario (i.e. one Program C Well in operation) using the Adaptive Method for Sustainable Yield is also provided for comparison in Figure 22.

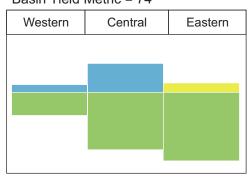

The estimated Sustainable Yield of the Basin has been reported to the closest 10 acre-feet, similar to the other components of inflow and outflow to the Basin water balance estimated using the Basin model (LOBP Figures 74 and 75; ISJ Group, 2015). This level of rounding is based on the precision, not the accuracy, of the Basin model. Estimating the Sustainable Yield of the Basin is directly associated with mitigating seawater intrusion. The ability of the Basin model to accurately simulate seawater intrusion was evaluated during model conversion to Equivalent Freshwater Head (EFH) in 2005 (Cleath & Associates 2005) and again during model conversion to SEAWAT in 2009 (CHG, 2009a). In 2005, the EFH model estimated 620 acre-feet per year of seawater intrusion along the coast under long-term climatic conditions with 1999-2001 Basin pumping, while an analytical approach using available hydrogeologic data and Darcy's Law estimated 500 acre-feet per year of intrusion, indicating the numerical analysis (flow model) was more conservative as a Basin management tool than the analytical approach. A subsequent comparison of seawater intrusion at the coast between the EFH model and the upgraded SEAWAT model showed the two models were within 2 percent of each other.

¹2015 LOBP established the Sustainable Yield methodology and estimated it to be 2,450 AFY. The subsequent 2015 Stipulated Judgement set the default Sustainable Yield at 2,400 AFY. On June 30, 2016, the BMC unanimously approved the 2015 Annual Report with a Sustainable Yield of 2,450 AFY. On June 21, 2017, the BMC unanimously approved the 2016 Annual Report with a Sustainable Yield of 2,760 AFY. On June 16, 2021, the BMC approved submitting the 2020 Final Draft Annual Report to the Court with a Sustainable Yield of 2,760 AFY, but clarified that approval of the report should not be construed as "evaluating, setting, or establishing" the sustainable yield under the terms of the Stipulated Judgement. In October 2021, a Sustainable Yield of 2,380 AF for 2022 was approved by the BMC. In December 2022, a Sustainable Yield of 2,380 AF for 2023 was approved by the BMC.

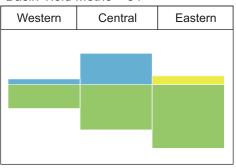

2011-2015 Average Production 2,490 AFY Sustainable Yield 2,450 AFY Basin Yield Metric = 102

Year 2021 Average Production 2,000 AF Sustainable Yield 2,760 AF Basin Yield Metric = 72

Year 2023
Average Production 1,650 AF
Sustainable Yield 2,380 AF
Basin Yield Metric = 69


Explanation:
Size of rectangle is proportional to groundwater production

Alluvial Aquifer


Upper and Perched Aquifer

Lower Aquifer

2016-2020 Average Production 2,030 AFY Sustainable Yield 2,760 AFY Basin Yield Metric = 74

Year 2022 Average Production 2,010 AF Sustainable Yield* 2,380 AF Basin Yield Metric = 84

Program C Sustainable Yield Scenario Adaptive Method - Broderson 50% Average Production 2,380 AFY Sustainable Yield 2,380 AFY Basin Yield Metric = 100

Western	Central	Eastern

Note: historical (pre-2015) Basin Yield Metrics are from LOBP.

*Sustainable Yield decreased due to methodology revision in 2021.

Figure 22 Basin Yield Metric Comparison Los Osos Groundwater Basin 2023 Annual Report

Cleath-Harris Geologists

The SEAWAT model also matched the historical average velocity of seawater intrusion into the Lower Aquifer of 50-60 feet per year (from water quality data), although the simulated velocity was higher in Zone D (80 feet per year) and lower in Zone E (40 feet per year).

Seawater intrusion in Zone E continued to move inland through LA11 in 2023, despite a Basin Yield Metric value of 69, which significantly less than the goal of 80 or less. Water levels at LA11 also reached 40-year highs in 2023, although they remain a few feet below the Ghyben-Herzberg relation threshold for avoiding intrusion into the well.

A Basin Yield Metric value of 69 suggests the level of Basin production in 2023 should be sustainable, yet Zone E intrusion continues. This apparent inconsistency may be attributable to the distribution of pumping and to transient effects, or lag, in both the recovery of Lower Aquifer pressures following decades of overdraft, and the response of seawater to these pressures. For example, as shown in Figure 22, the volume of Lower Aquifer pumping from Western Area wells in 2023 remains greater than modeled in the 2,380 AFY Program C Sustainable Yield scenario with Broderson at 50 percent development. Lower Aquifer pumping in the Western Area has a greater adverse impact on seawater intrusion, compared to pumping in the Central and Eastern Areas. In terms of the lag effect, 2023 is the first year under the adaptive method with a Basin Yield Metric below 80. Lower Aquifer water levels continued to rise through 2023, indicating the mitigation for intrusion continues to increase. The transient model will provide a more detailed understanding of both the areal pumping distribution and the lag involved in seawater intrusion mitigation, and help explain the observation of continued intrusion under apparent sustainable Basin conditions.

There have been no significant changes to the current Basin model since 2009. A peer review was conducted by Stetson Engineers (2010) which characterized the model as an appropriate planning tool that could be utilized as intended, and that would benefit from updates as more data is collected. A peer review of the model is also required by the Stipulated Judgement every 10 years. Upgrading the steady-state model to a fully transient model is in progress as part of the Los Osos Water Recycling Funding Program grant project (Section 2.2.5).

7.5.2 Basin Development Metric

The Basin Development Metric compares the estimated Sustainable Yield of the Basin in a given year with the estimated maximum Sustainable Yield of the Basin with all potential LOBP Program projects implemented (see Section 10 for a brief overview of LOBP Programs). The Basin Development Metric for 2023 is a ratio expressed as follows:

The 2023 Sustainable Yield is estimated at 2,380 acre-feet. The Maximum Sustainable Yield with all LOBP projects implemented was estimated at 3,500 acre-feet in the LOBP, but has not been re-

evaluated using the Adaptive Method. Therefore, no Basin Development Metric has been calculated for 2023. The purpose of the metric is to inform the BMC on the percentage of the Basin's Maximum Sustainable Yield that has been developed. There is no LOBP objective for the Basin Development Metric.

As presented in the LOBP, the estimated Sustainable Yield of the Basin will increase beginning with urban water reinvestment Program U and Basin infrastructure Programs A and C, which are currently in progress (Section 10). Once the transient model is available, the Maximum Sustainable Yield will be updated to account for the location of the second Program C well, revised expectations for recycled water availability, and changes to Sustainable Yield methodology.

7.5.3 Water Level, Chloride, and Nitrate Metrics

The Water Level, Chloride, and Nitrate Metrics are measurements of the effectiveness of Basin management. The Water Level and Chloride Metrics address changes in the Lower Aquifer related to seawater intrusion mitigation, while the Nitrate Metric addresses changes in First Water and the Upper Aquifer related to nitrate contamination mitigation.

Water Level Metric

The Water Level Metric is defined as the average Spring groundwater elevation, measured in feet above mean sea level, in five Lower Aquifer wells. These wells are LA2, LA3, LA11, LA14, and LA16 (Figure 4).

Two Water Level Metric wells (LA14 and LA16) are positioned in the Western Area near the current seawater intrusion front (250 mg/L chloride isopleth) and one well is in the Central Area on the bay front (LA11). As Basin production is redistributed through the Basin infrastructure program, these Water Level Metric wells will monitor Lower Aquifer groundwater levels in critical areas near the seawater intrusion front. The last two Water Level Metric wells are located on the Morro Bay sand spit (LA2 and LA3), where monitoring will help evaluate regional effects, rather than just localized water level rebound. Figure 23 graphs historical trends in the metric. Table 21 presents the 2023 Water Level Metric.

Chloride and Water Level Metric Lower Aquifer

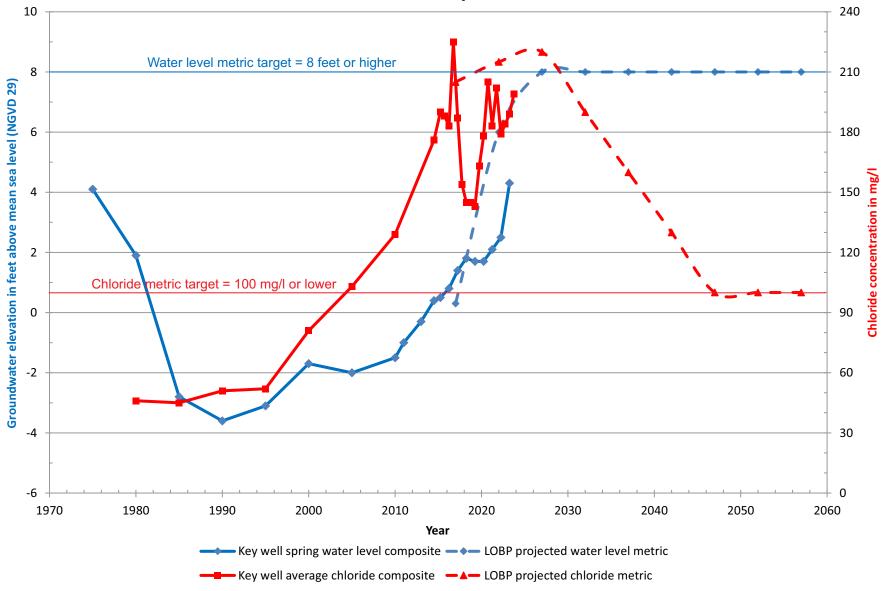


Figure 23 Chloride and Water Level Metric Los Osos Groundwater Basin 2023 Annual Report

Table 21	. 2023 Water Level Metric
	Spring 2023
Metric Well	Groundwater Elevation
	(feet above sea level – NGVD 29 Datum*)
LA2	2.70
LA3	0.28
LA11	4.67
LA14	5.64
LA16	8.18
Water Level Metric (average)	4.30

Data Source: LOBP and County Groundwater Monitoring Programs

The NGVD 29 datum is still used for the Water Level Metric because it matches the Basin model datum and conveniently equates zero elevation with mean sea level. Groundwater elevations have been adjusted to the NGVD 29 datum using a 2.8 feet downward shift, based on North American Vertical Datum Conversion (VERTCON) data reviewed for the Basin, as published by the National Geodetic Society.

The Spring 2023 Water Level Metric is 4.3 feet NGVD 29 (approximately 7.1 feet NAVD 88). Mean sea level is approximately 0 feet in the NGVD 29 datum, and 2.8 feet in the NAVD 88 datum for the central coast of California, where the Basin is located. The metric was rising (an improvement) from 2005 through 2018, likely in response to a decrease in Lower Aquifer production. Following a flat interval between 2018 and 2020, the metric continued rising in 2023 (Figure 23). Since 2015, the Water Level Metric has increased by 3.8 feet. The LOBP objective for the Water Level Metric is 8 feet or higher (ISJ Group, 2015).

Included in Figure 23 are projected trendlines for the Water level and Chloride Metric from the LOBP. The actual metrics are not expected to follow straight lines, but the trendlines are useful to depict the general nature of the anticipated trends. Several years of continued rise in the Water Level metric is expected before reaching the LOBP objective.

A re-evaluation of the Water Level Metric (and other metrics discussed below) was initiated in 2021, in coordination with completion of the Phase 2 wellhead survey, as recommended in the 2020 Annual Report. This effort is currently on hold as the BMC Staff evaluates opportunities to improve the Basin Monitoring Network (Section 10.2). Expansion of the Lower Aquifer transducer network was implemented at the end of 2021, which will help to identify groundwater mounding effects within the Lower Aquifer from treated wastewater disposal at the Broderson Site and provide support for interpreting Water Level Metric trends in the future.

^{*}Subtracted 2.8 feet from NAVD 88 elevations in Table 5 to convert to NGVD 29 datum for metric.

Chloride Metric

The Chloride Metric is defined as the weighted average concentration of chlorides in four key Lower Aquifer wells. One key well (LA10) is within the historical path of seawater intrusion (Cleath & Associates, 2005). Reduction in pumping from the Lower Aquifer should result in measurable declines in chloride concentrations at this well, as the hydraulic head in the Lower Aquifer increases and the inland movement of seawater decreases or is reversed. The Chloride Metric target level is 100 mg/L or lower, and the LOBP Groundwater Monitoring Program schedule for measuring the Chloride Metric is in the Spring and Fall.

There are also three key wells on the perimeter of the seawater intrusion front (LA8, LA11, and LA12). Wells LA11 and LA12 monitor Lower Aquifer chloride concentrations in the northern portion of the Basin, while LA8 monitors chloride concentrations in the southern portion. When calculating the Chloride Metric, the concentration of Well LA10 is given twice the weight of the other three wells, in order to increase the sensitivity of the metric to management actions (refer to the LOBP for a description of the development of the metric). The Chloride Metric is a simplification of Basin conditions and can vary significantly from year to year due to localized chloride fluctuations, particularly at well LA10 due to wellbore leakage from the Upper Aquifer (2018 Annual Report, Appendix J). Table 22 presents the Spring and Fall 2023 Chloride Metric. Figure 23 graphs historical values in the metric.

A Lower Aquifer Zone D and Zone E monitoring well cluster was installed at the east end of Skyline Drive in December of 2023. The LOCSD was the lead agency and contracted with Filipponi and Thompson Drilling to construct the monitoring wells in December. Water quality data from the well cluster (two wells in separate boreholes) should help resolve the problem at LA10 with Upper Aquifer influence from wellbore leakage on seawater intrusion monitoring. Sampling data from the new wells will be incorporated into the BMC's annual groundwater monitoring program and included in future Annual Monitoring Reports. The first sampling event will be in Spring of 2024. Construction information for the Skyline monitoring well cluster is in Appendix K.

Table 22. 2023 Chloride Metric					
Metric Well	Spring 2023	Fall 2023			
(Aquifer Zone)	Chloride Concentrations	Chloride Concentrations			
LA8 (Zone D)	80 mg/L	81 mg/L			
LA10 (Zone D/E)	211 mg/L (double counted for average)	235 mg/L (double counted for average)*			
LA11 (Zone E)	346 mg/L	350 mg/L			
LA12 (Zone D)	98 mg/L	95 mg/L			
Chloride Metric (weighted average)	189 mg/L	199 mg/L			

Data Source: LOBP Groundwater Monitoring Program (Appendix C)

The 2023 Chloride Metric indicates a slight increase of the seawater intrusion front (fall to fall), compared to prior years. Seawater intrusion is typically most active in the fall, when water levels

^{*}The reported chloride value of 180 mg/L at LA10 in Fall 2023 was affected by Upper Aquifer leakage, therefore the reported value was substituted for 235 mg/L chloride from Fall 2022 in order to calculate the chloride metric.

(fresh water pressures) are lowest, although chloride concentrations at individual wells may vary based on local influences. As noted above in Table 22, a value of 180 mg/L chloride was reported for LA10 in Fall 2023, but the nitrate-nitrogen concentration of 3.2 mg/L indicated Upper Aquifer influence. Therefore, the chloride value at LA10 for metric calculations was maintained at 235 mg/L, based on the prior Fall 2022 value. A comparison between Spring 2023 and Fall 2023 shows a slight increase in the metric, and the Chloride Metric has also increased relative to the target value between Fall 2022 (184 mg/L) and Fall 2023 (199 mg/L), indicating an overall deterioration during 2023 (Figure 23).

Table 22 also lists the Lower Aquifer zone tapped by the individual Chloride Metric wells. Two wells are in Zone D, one is Zone E, and one is mixed Zone D/E. The Zone E and Zone D/E wells show the greatest impact from seawater intrusion, and Zone E is interpreted to have much higher chloride concentrations than Zone D in most of the Western Area (Figure 19). As with the Water Level Metric, a re-evaluation of the Chloride Metric was initiated in 2021 and is currently on hold, pending BMC Staff evaluation of opportunities to improve the Basin Monitoring Network (Section 10.2).

As previously mentioned, Figure 23 includes projected trendlines for the Water level and Chloride Metric from the LOBP. Several years of continued rise in the Chloride Metric (deterioration in Basin conditions) is expected before the metric trend reverses, followed by many years of gradual decline in the metric before reaching the LOBP objective.

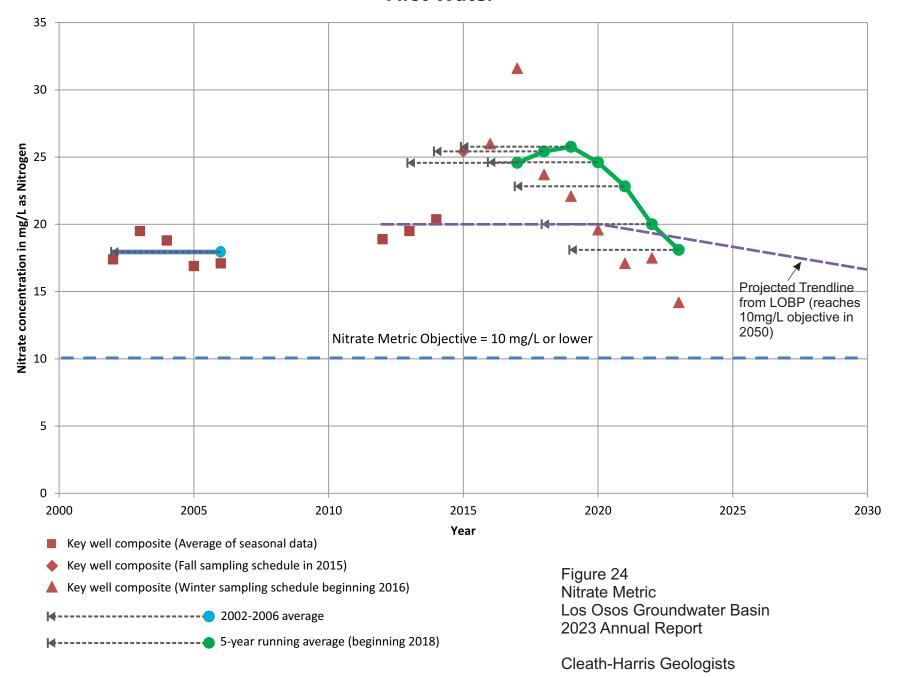
Nitrate Metric

The Nitrate Metric is defined as the average concentration of nitrate in five First Water key wells located in areas of the Basin that have been impacted by elevated nitrate concentrations. The Nitrate Metric data is obtained from the LOWRF Groundwater Monitoring Program's winter sampling event and focuses on shallow, adversely impacted wells to track changes in nitrate concentrations in groundwater over time. Table 23 presents the Nitrate Metric for 2023. Figure 24 graphs historical values in the metric, along with the 5-year average for 2002-2006 and a 5-year running average beginning in 2018. The Nitrate Metric target level is 10 mg/L or lower.

Tabl	e 23. 2023 Nitrate Metric
Metric Well	Winter 2023 Nitrate-Nitrogen (NO ₃ -N) Concentrations
FW2	24 mg/L
FW6	3.1 mg/L
FW10*	13 mg/L
FW15	18 mg/L
FW17	13 mg/L
Nitrate Metric (average)	14.2 mg/L

Data Source: LOWRF Groundwater Monitoring Program (Rincon Consultants, 2023)

^{*}Water quality sample collected by CHG in October 2023



The Nitrate Metric for Winter 2023 was calculated at 14.2 mg/L nitrate-nitrogen (NO₃-N), which is above the Maximum Contaminant Level of 10 mg/L (the drinking water standard). There was a 3.3 mg/L decrease in the Nitrate Metric from Winter 2022 (17.5 mg/L), to Winter 2023 (14.2 mg/L), which is an improvement (Figure 24). The greatest decrease in NO₃-N over the last several years was measured at key well FW6, where concentrations measured 15 mg/L in 2016 and have declined to 2.5 mg/L in 2021, with a slight increase in 2023. FW6 is hydraulically downgradient of the Broderson site, and NO₃-N declines are largely attributable to recycled water discharges at Broderson. In 2023, another well hydraulically downgradient of the Broderson site (FW5; not a metric well) continues to show decline in nitrate concentrations, from 15 mg/L NO₃-N in 2022 to 11 mg/L in 2023.

Independent of LOBP actions, construction, and operation of the community sewer system and LOWRF have largely stopped nitrate loading in the Basin from septic disposal within the wastewater service area. Nitrate concentrations in First Water (includes portions of the Perched Aquifer and Upper Aquifer) are expected to begin declining over the next decade, and in 2023 the Nitrate Metric reached the lowest point recorded in the last 20 years. The five-year running average (currently 2019-2023), which represents long term trends, continues to decrease (Figure 24).

Included in Figure 24 is the projected trendline for the Nitrate Metric from the LOBP. The actual metric is not expected to follow straight lines, but a trendline is useful to depict the general nature of the anticipated trend. The anticipated trend following wastewater project implementation was several years of stable (but elevated) nitrate-nitrogen concentrations, followed by a gradual and long-term decline in the Nitrate Metric, reaching the LOBP objective mid-century.

Nitrate Metric First Water

Lower Aquifer Nitrate

The Nitrate Metric is specific to the Upper Aquifer, however, nitrate is also a concern in areas of the Lower Aquifer. Nitrate concentrations in Lower Aquifer groundwater have been increasing historically, and a reduction in nitrate loading to the Basin does not prevent the movement of existing nitrate from the Upper Aquifer into the Lower Aquifer, which is expected to continue adversely impacting Lower Aquifer water quality. Septic discharges are still occurring in certain portions of the basin where the sewer collection system was not installed. Development of a Nitrate Metric specific to the Lower Aquifer was initiated in 2021 as part of the metric reevaluations and is currently on hold, pending BMC Staff evaluation of opportunities to improve the Basin Monitoring Network (Section 10.2).

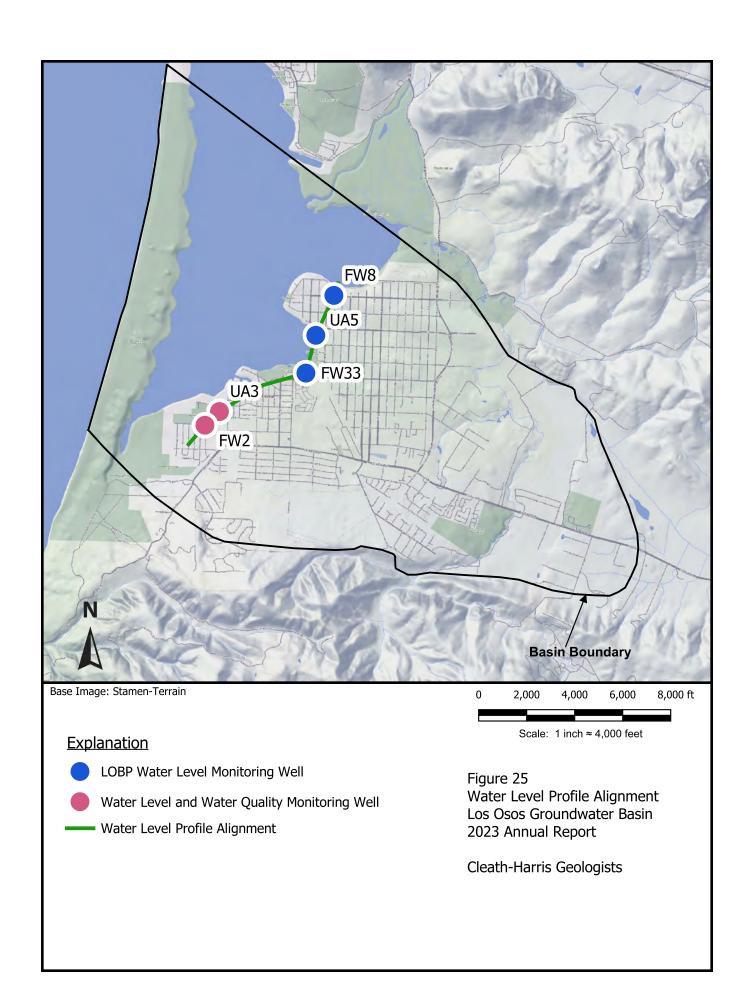
A 2019 Technical Memorandum prepared for the BMC (CHG, 2019a) identified two areas where nitrate concentrations were threatening Lower Aquifer community water supply wells, one in the Western Area near LA8 and LA9, and the other in the Central Area near LA21 and LA22 (Figure 4). S&T funded an investigation focused on identifying the sources of Lower Aquifer nitrate in groundwater produced by LA8, which concluded that septic system discharges from Cabrillo Estates appeared to be the primary source, although there were others (CHG, 2021b). The BMC subsequently authorized Phase 2 of the Lower Aquifer Nitrate investigation, which has since been delayed, pending further input from the Regional Board in 2024.

7.5.4 Upper Aquifer Water Level Profile

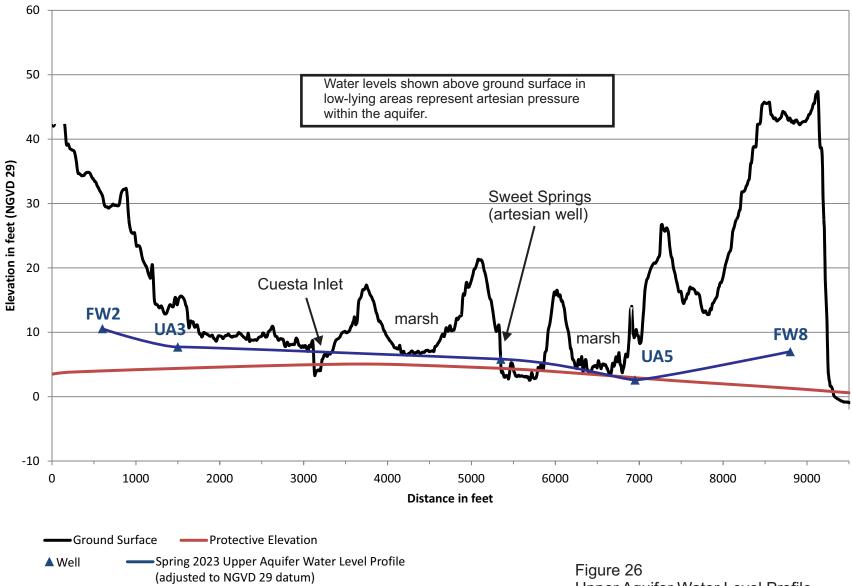
Metrics allow the BMC, regulatory agencies, and the public to evaluate the status of nitrate concentrations and seawater intrusion in the Basin through objective, numerical criteria that can be tracked over time (LOBP; ISJ Group, 2015). The Upper Aquifer has a Nitrate Metric, but does not have a Water Level Metric or Chloride Metric because seawater intrusion is not occurring in the Upper Aquifer. Seawater intrusion affects chloride concentrations in groundwater and moves primarily in response to changes in water levels and associated hydraulic head in an aquifer.

A Water Level Metric and Chloride Metric for the Upper Aquifer was recommended in the 2016 Annual Report to provide the BMC with a management tool for addressing the potential for seawater intrusion into the Upper Aquifer as Upper Aquifer production increases. There are only a few Upper Aquifer wells, however, along the shoreline of the Morro Bay estuary where seawater intrusion would be most likely to occur. An alternative management tool proposed for the Upper Aquifer is the Water Level Profile. The benefit of a profile, rather than a metric, is that spatial information is included. Conditions for seawater intrusion along the Water Level Profile could occur before an equivalent metric-based threshold is reached, since there is no averaging in the Water Level Profile. Metrics were not designed for early detection, which is what is needed for Upper Aquifer seawater intrusion monitoring.

Seawater has a density that is 1.025 times greater than fresh water. For every foot of fresh water head above sea level, the seawater interface will be displaced 40 feet below sea level, according to the Ghyben-Herzberg relation (Freeze and Cherry, 1979). Using the Ghyben-Herzberg relation



and elevation contours on the base of the Upper Aquifer, a profile showing the groundwater elevations needed to avoid seawater intrusion beneath the bay shoreline (the Protective Elevation) has been prepared, along with the Spring 2023 Upper Aquifer groundwater elevations along the same profile, adjusted to the NGVD 29 datum. The resulting comparison of the Upper Aquifer Water Level Profile and the Protective Elevation is shown in Figures 25 and 26.


Most water levels along the Water Level Profile in Spring 2023 were above the Protective Elevation; UA5 was only slightly below, which is an Upper Aquifer supply well along the bay in Baywood Park (Figure 25). Spring 2023 water levels shown above ground surface in low-lying areas near the bay represent artesian pressures in the aquifer, and incorporate pressure measured in an artesian well at Sweet Springs. Groundwater seeps and springs are common along the bay shoreline, including Sweet Springs and the 3rd Street marsh.

If water levels decline below the Protective Elevation, there would be a theoretical potential under hydrostatic conditions (zero hydraulic gradient) for seawater intrusion to occur at the base of the Upper Aquifer. Water levels have been below the Protective Elevation in the past along portions of the profile without any seawater intrusion detected, particularly during drought periods (e.g. mid 1970's at UA5 and early 1990's at UA3).

Water levels at UA5 declined below the Protective Elevation in 2021 and 2022, with 2023 showing signs of some recovery. Chloride concentrations from UA5 available from purveyor records indicated a relatively sharp rise in chlorides between Fall 2020 (32 mg/L) and Fall 2021 (64 mg/L), with a lesser increase through Fall 2023 (69 mg/L). Although these chloride concentrations are relatively low (250 mg/L is the recommended limit and 500 mg/L is the upper limit for drinking water), the trend warrants continued monitoring by the water purveyor.

Upper Aquifer Water Level Profile

Note: Sweet Springs artesian well marker at measured wellhead pressure.

Figure 26
Upper Aquifer Water Level Profile
Los Osos Groundwater Basin
2023 Annual Report

Cleath-Harris Geologists

8. BASIN STATUS

The status of the Basin in 2023 is summarized as follows:

- The Basin received above normal rainfall in 2023. San Luis Obispo County started 2023 with severe drought conditions in January. No drought conditions were reported at the end of the calendar year in December 2023 (NDMC/USDA/NOAA, 2023).
- Groundwater production for the Basin totaled an estimated 1,650 acre-feet in the 2023 calendar year, which is 360 acre-feet less than in 2022. Purveyor groundwater production decreased by an estimated 30 acre-feet, while production for community facilities also decreased by an estimated 30 acre-feet in 2023, compared to 2022. Production for agricultural irrigation decreased by an estimated 180 acre-feet, and private domestic production, which was recalculated based on a new study, decrease by an estimated 110 acre-feet in 2023, compared to 2022.
- Water levels rose between Spring 2022 and Spring 2023 across the Basin in all aquifers, averaging approximately 5 feet higher in the Perched Aquifer, 2.8 feet higher in the Upper Aquifer, and 3.5 feet higher in the Lower Aquifer.
- Seawater intrusion in Zone D has been relatively stable between 2022 and 2023 (no change in Lower Aquifer freshwater storage), although chloride at one of the key locations (LA10) was lower than normal in Fall 2023 due to Upper Aquifer influence, so the value from Fall 2022 was substituted. Zone E seawater intrusion is pervasive in the Western Area. In the Central Area, Zone E seawater intrusion has advanced inland of LA11, and appears to be moving toward LA12, although a review of ion ratio trends since 2004 shows no indication of intrusion precursors at LA12.
- The Basin Yield Metric for 2023 is 69, which is below the LOBP goal of 80.
- A Basin Yield Metric value of 69 suggests the level of Basin production in 2023 should be sustainable, yet Zone E intrusion continues. This apparent inconsistency may be attributable to the distribution of pumping and to transient effects, or lag, in both the recovery of Lower Aquifer pressures following decades of overdraft, and the response of seawater to these pressures. The transient model will provide a more detailed understanding of both the areal pumping distribution and the lag involved in seawater intrusion mitigation, and will help explain the observation of continued intrusion with apparent sustainable Basin conditions.
- The Basin Development Metric was not estimated in 2023, pending application of the updated Sustainable Yield methodology to all LOBP programs. There is no LOBP objective for the Basin Development Metric.
- The Water Level Metric increased between 2022 and 2023 from 2.5 to 4.3 feet, indicating an improvement, but still remains several feet below the target value of 8 feet.

- The Chloride Metric increased relative to the 100 mg/L target value between Fall 2022 (184 mg/L) and Fall 2023 (199 mg/L), indicating a deterioration in 2023.
- The Nitrate Metric remains above the 10 mg/L target value, but decreased from 17.5 mg/L NO₃-N in 2022 to 14.2 mg/L NO₃-N in 2023, indicating an improvement for 2023.
- Upper Aquifer water levels were above the Protective Elevation along the bay, except for near UA5. Chloride concentrations remain low and are being closely monitored.

9. **RECOMMENDATIONS**

The following LOBP Groundwater Monitoring Program recommendations from the 2022 Annual Report were completed in 2023, or are in progress and planned for completion in 2024:

- Updating the Maximum Sustainable Yield now that the location of the second Program C expansion well is finalized in order to incorporate changes to the LOBP, including revised expectations for recycled water availability and revisions to the Sustainable Yield methodology (Section 7.5.2). Completed for Program C may be completed for additional programs using transient model
- Re-evaluate Water Level Metric target after completion of wellhead surveys (Section 7.5.3).
 This task has been expanded to include Water Level, Chloride, and Nitrate Metric updates
 On hold
- Develop a rating curve for stream flow Sensor 751 on Los Osos Creek (Section 6) Completed
- A peer review of the Basin model is required by the Stipulated Judgement every 10 years. Upgrading to a fully transient Basin model would be recommended prior to the next peer review (Section 7.5.2). Planning and funding efforts for a transient Basin model was initiated in 2021. The transient Basin model would replace the existing steady-state model, once completed. *transient model in progress*
- Water levels at UA5 are below the Protective Elevation for the third consecutive year and chloride concentrations are increasing. Continued close monitoring of UA5 water quality by the water purveyor is recommended (Section 7.5.4). *Ongoing*
- Attempt to locate and salvage well FW7 for monitoring groundwater mounding beneath the Broderson leach field (Section 7.2). *Planned for 2024*
- Install a Lower Aquifer monitoring well at the east end of Skyline Avenue in order to better monitor the movements of the seawater intrusion front (Section 7.2) *Completed*

The following additional LOBP Groundwater Monitoring Program recommendations are provided for BMC consideration. Recommendations on Adaptive Management are provided in Section 10.

- Continue to implement recommendations for well modifications and new monitoring well constructions to help characterize Lower Aquifer seawater intrusion (Section 7.3).
- A review of CEC testing constituents and locations is recommended (Section 7.2.2).

10. STATUS OF BASIN METRICS, BMC INITIATIVES AND LOBP PROGRAM IMPLEMENTATION

The LOBP provides for periodic review of the implementation of the LOBP through establishment of an Adaptive Management Plan that allows the BMC to do the following:

- o Evaluate trends of key Basin metrics;
- o Identify additional data needs;
- o Report the data analysis to various interested parties;
- o Modify the LOBP programs and schedule, if necessary, in response to current conditions and observed trends in the Basin;
- o Modify procedures to utilize current best management practices; and
- o Modify pumping, treatment, and/or water reuse procedures in response to Basin conditions and trends that show signs of water quality degradation, including increased levels of contamination and/or increased levels of seawater intrusion.

The following sections provide a status update on the Basin metrics, BMC Initiatives and LOBP Program implementation. The Adaptive Management Plan offers a tool with which the BMC can modify the LOBP programs, based on the performance of Basin metrics and other monitoring results, to better meet overall LOBP objectives.

10.1 Basin Metrics

As noted in Section 7 ("Data Interpretation") of this Annual Report, the LOBP established several metrics to measure nitrate impacts to the Upper Aquifer, seawater intrusion into the Lower Aquifer, and the effect of management efforts on the Basin. These metrics allow the BMC, regulatory agencies and the public to evaluate the status of nitrate levels, seawater intrusion, and the impact of implementation of the LOBP programs, through objective and numerical criteria that can be tracked over time. The 2022 metric values are summarized in Table 24 for easy reference during discussion and evaluation of the LOBP programs.

Table 24. LOBP Metric Summary						
Metric	LOBP Goal	LOBP Goal Calculated Value from 2023 Data				
Basin Yield Metric: Comparison of current well production to Sustainable Yield	80 or less	69	Decrease from 84 (improvement) ²			
Water Level Metric: Average groundwater elevation in 5 key wells in the Lower Aquifer	8 feet above mean sea level or higher	4.3 feet above mean sea level	Increase from 2.5 ft. (improvement)			
Chloride Metric: Weighted average chloride concentration in 4 key wells in the Lower Aquifer	100 mg/L or lower	199 mg/L	Increase from 184 mg/L (deterioration)			
Nitrate Metric: Average nitrate concentration in 5 key wells in the Upper Aquifer	10 mg/L or lower	14.2 mg/L (NO ₃ -N)	Decrease from 17.5 mg/L (improvement)			

10.2 Update on BMC Initiatives

Based on the Basin status (Section 8) and recommendations (Section 9), the BMC will evaluate opportunities to develop and pursue additional measures to improve Groundwater Monitoring and Management. The following is an update on additional measures related to BMC Groundwater Monitoring and Management:

Program C Adaptive Management. At its April 20th, 2022 Meeting, the BMC approved CHG to evaluate the re-inclusion of the 3rd Well into Program C. Additional detail regarding the history of the 3rd Program C Well is available in the April 20th, 2022 BMC Agenda Packet. This analysis includes evaluation of the anticipated increase in the Sustainable Yield

²On October 27th, 2021 the BMC unanimously adopted a new methodology for calculating the Sustainable Yield for Basin that reduced the Sustainable Yield estimate from 2,760 to 2,380 AF for Calendar Year 2022. Reducing the Sustainable Yield estimate increased the Basin Yield Metric from 72 to 84, assuming a consistent amount pumping.

that the 2nd and 3rd Program C Wells would provide utilizing the updated criteria for calculating the Sustainable Yield approved by the BMC at their October 27th, 2021 Meeting. The findings from the analysis were presented to the BMC at their August 16th, 2023 BMC Meeting, where the BMC approved removal of the deferral of the 3rd Well from Program C.

Lower Aquifer Nitrate Investigation. On March 15th, 2023 the BMC received a presentation from representatives from the Central Coast Regional Water Quality Control Board (CCRWQB) on the Lower Aquifer Nitrate Contamination Investigation Update, which had been initiated by S&T in 2021 (CHG, 2021b). Further BMC investigations into the Lower Aquifer nitrate contamination in the western portion of the Los Osos Basin are currently on hold pending ongoing discussions between the CCRWQB and the County of San Luis Obispo. Additional information on the Lower Aquifer Nitrate Investigation is included in Section 7.5.3 Water Level, Chloride, and Nitrate Metrics of this Annual Report.

Evaluation of Water Conservation Measures. To improve the understanding of the effectiveness of existing conservation programs and the future conservation potential within the community, the purveyors are collaborating with the County on a Title 19 Water Offset Study to update water usage estimates for urban and rural residences sourcing water from the Los Osos Groundwater Basin, propose new water conservation measures for the retrofit-to-build program, and estimate remaining water savings potential for the community. This study was completed and published on June 30th, 2023. Findings from the study were utilized to inform proposed modifications to Title 8 (Health and Sanitation Ordinance) and Title 19 (Building and Construction Ordinance) of the County Code for evaluation by County Board of Supervisors in 2024.

WRFP Study/Transient Groundwater Model: At its October 27th, 2021 Meeting, the BMC authorized the preparation of a Water Recycling Funding Program (WRFP) Grant Application and to request access to the \$150,000 of funding that the County budgeted to develop a transient groundwater model. The LOCSD is the lead agency for the grant on behalf of the BMC and on February 2nd, 2022 submitted an application for a WRFP grant to develop a transient model and analyze recycled water and supplemental water projects to improve the sustainability of the Basin (WRFP Study). The BMC and the Los Osos CSD was notified of the award of the grant in January 2023 and all the required documents were signed and fully executed. The Los Osos CSD released the RFP for the WRFP Study on February 27th, 2023 and proposals were due March 31st, 2023. The WRFP Study Consultant Selection Committee reviewed the proposals and interviewed the two top ranked consulting firms and the BMC approved Cleath-Harris Geologist (CHG) to complete the WRFP Study on May 17th, 2023. Development of the WRFP Study and the transient model is currently underway with an anticipated completion date in Q1 2025.

Discussion and Recommendation of Criteria for Future Growth. At its May 2017 meeting, to provide input into the Los Osos Community Plan (LOCP), including consideration of Basin metrics and defined goals as they relate to the timing of future growth within the Basin, the BMC authorized the release of a letter to the County Planning

Department and Coastal Commission staff recommending that future development should be subject to the following provisions:

- 1. Any growth projections in the updated LOCP should be consistent with the water supply estimates provided in the LOBP.
- 2. The LOCP should acknowledge any infrastructure projects contemplated by the LOBP that would require coastal planning action subject to the authority of the Coastal Commission. This provision would help expedite completion of any affected projects.
- 3. Amendments to the County's Growth Management Ordinance [separate from the LOCP/LCP] should provide a growth rate for Los Osos consistent with the adaptive management provisions of the LOBP. In particular, the rate of growth must be set so that the monitoring provisions of the LOBP confirm the adequacy of a sustainable water supply in support of any contemplated future growth.

On December 15, 2020, the County Board of Supervisors adopted the LOCP and Final Environmental Impact Report and tentatively adopted amendments to the Growth Management Ordinance that would establish a residential growth rate for the Los Osos urban area³. The adopted LOCP is still subject to change based on Coastal Commission review, which is currently underway. If the LOCP is certified by the Coastal Commission with no changes, the Growth Management Ordinance amendments to establish a growth rate for Los Osos become effective upon Coastal Commission certification. If the Coastal Commission recommends changes, then the growth rate may need to be further considered at another County Board of Supervisors hearing.

The purveyors are currently working with the County, at the request of the Coastal Commission, to evaluate water supply availability in the Basin and the triggers for water offset requirements for allowing additional development within the Basin.

10.3 **LOBP Programs**

The LOBP outlines a number of programs developed to meet the goals of the various metrics outlined above. The BMC has analyzed the impacts of implementing various combinations of programs on the Basin4. In particular, the BMC modeled the impact of each combination on the Basin Yield Metric, Water Level Metric and Chloride Metric. Based on this analysis, the LOBP recommends the following programs for immediate implementation:

³The LOCP and Growth Management Ordinance policies considered by the Board on December 15 are available at: https://agenda.slocounty.ca.gov/iip/sanluisobispo/agendaitem/details/12683

⁴The LOBP analyzed the following seven potential programs: (1) Groundwater Monitoring Program; (2) Urban Water Use Efficiency Program: (3) Water Reinvestment Program; (4) Basin Infrastructure Program; (5) Supplemental Water Program; (6) Imported Water Program; (7) Wellhead Protection Program.

- o Groundwater Monitoring Program;
- o Urban Water Use Efficiency Program;
- o Urban Water Reinvestment Program;
- o Basin Infrastructure Programs A and C; and
- o Wellhead Protection Program.

Two additional programs were included in the LOBP and will be considered by the BMC for implementation if the County and the Coastal Commission were to allow future development in Los Osos as part of the LOCP and the Los Osos Habitat Conservation Plan (LOHCP): (1) Basin Infrastructure Program B; and (2) either Basin Infrastructure Program D or the Agricultural Water Reinvestment Program. Per the LOBP, a funding mechanism to pay for additional costs required to accommodate the water demand associated with new development will need to be established.

Since additional development has not been approved through the LOCP update, Programs B and D have not been initiated at this point.

10.3.1 Groundwater Monitoring Program

In order to allow calculation of the above metrics with a higher degree of accuracy, the BMC has implemented the Groundwater Monitoring Program. The Groundwater Monitoring Program is designed to collect, organize and report data regarding the health of the Basin from a current network of 93 wells.⁵ In addition to facilitating the calculation of metrics, this data provides information needed to manage the Basin for long-term sustainability. Implementation of the Groundwater Monitoring Program also satisfies various external monitoring requirements, such as the California Statewide Groundwater Elevation Monitoring Program (CASGEM) and waste discharge and recycled water permits for the LOWRF. Monitoring under the program began in 2014 and will continue to occur in the spring and fall of each year when water levels are typically at their highest and lowest. This Annual Report represents the tenth monitoring event under the Groundwater Monitoring Program. The BMC plans to continue to report the values for all Basin metrics and other relevant, non-proprietary data to the Parties, the Court and the public in its future Annual Reports. Additional recommendations and planned actions relating to the Groundwater Monitoring Program are described in Section 9. Table 25 summarizes the status of the various implementation tasks set forth in the LOBP that is related to the Groundwater Monitoring Program.

10.3.2 Urban Water Use Efficiency Program

In order to reduce annual groundwater production from the Basin, and thus reduce the Basin Yield Metric, the LOBP recommends implementation of the Urban Water Use Efficiency Program. As described previously, the purveyors and the County completed an updated evaluation of the conservation potential for the community in 2023. The results of this evaluation will better inform

PUBLIC DRAFT

⁵The wells are distributed laterally across the Western, Central and Eastern Areas and vertically among First Water and the Upper and Lower Aquifers. Eighteen existing wells and two new wells have been added to the program since 2015.

the BMC and the BMC Parties on the potential future water savings that could be achieved through conservation efforts and program and utilized to inform proposed modifications to Title 8 (Health and Sanitation Ordinance) and Title 19 (Building and Construction Ordinance) of the County Code for evaluation by County Board of Supervisors in 2024. Additional information on the status of the current water conservation programs offered by the BMC Parties can be found on their respective websites.

Table 25. Basin Groundwater Monitoring Program Status				
Recommended Implementation Measure	Current Status	Funding Status	Projected Completion	
Wellhead Surveys: Perform wellhead surveys to establish reference point elevations and locations		Complete		
Protocols and Objectives: Establish well monitoring protocols and data quality objectives		Complete		
Water Level Monitoring: Assign water level monitoring responsibilities to the Parties or other stakeholders		Complete		
Access to Private Wells: Contact private well owners to request permission for participation in the groundwater elevation and water quality portions of the Groundwater Monitoring Program	Most contacts made as of April 2019.	Fully funded	Ongoing	
Water Quality Monitoring: Assign water quality monitoring responsibilities. The BMC will adopt a set of procedures for recording groundwater elevations and sampling for water quality.		Complete		
Data: Assign data compilation, organization and reporting duties		Complete		

10.3.3 Urban Water Reinvestment Program

Implementation of the Urban Water Reinvestment Program was recommended in the LOBP to increase the Sustainable Yield of the Basin (and thus further reduce the Basin Yield Metric). The Water Reinvestment Program will accomplish the LOBP's goal of reinvesting all water collected and treated by the LOWRF in the Basin, either through direct percolation to the aquifers or reuse. Water treated by the LOWRF will be of a sufficient quality to directly percolate into the Basin or

to reuse for landscape or agricultural irrigation purposes. The planned uses of that water are listed in Table 26, along with the actual uses and amounts of reused water from 20236.

Table 26. Planned Recycled Water Uses in the Urban Water Reinvestment Program					
Potential Use	LOBP Planned Annual Volume (AFY)	Actual Annual Volume in 2023 (AFY)			
Broderson Leach Fields	448	466			
Bayridge Estates Leach Fields	33	15			
Urban Reuse	63	0			
Sea Pines Golf Course	40	56			
Los Osos Valley Memorial Park	50	0			
Agricultural Reuse	146	4			
Construction Water	0	0			
Total	780	541			

The LOWRF construction was completed in March 2016. Through the end of 2022, the sewer service area had connected 99.5 percent of parcels that are required to connect, with approximately 29 properties remaining to connect. Flows to the wastewater plant in 2023 averaged approximately 479,600 gallons per day and totaled 537 AF for the year. Average wastewater flows are lower than anticipated due to conservation measures implemented by the community. Projecting the average flow per connection for 100 percent of the parcels required to connect results in a total estimated effluent inflow volume of 530 AFY, which is 250 AFY less than the anticipated 780 AFY of recycled water available for the urban water reinvestment program.

Recycled water in 2023 was conveyed to the Broderson and Bayridge Estates leach fields, Agricultural users, Sea Pines Golf Course, the median in Los Osos Valley Road between South Bay Blvd and Fairchild Way and used for construction water. The purveyors have executed agreements with the County of San Luis Obispo to supply recycled water to two schools and the County is utilizing funding provided by the America Rescue Plan Act (ARPA) to improve recycled water distribution system operations and connect the schools to the recycled water system. The agreement between the San Luis Obispo County Unified School District and County for delivering recycled water is still in progress.

The anticipated groundwater mound⁷ resulting from infiltration of treated wastewater disposal to leach fields at the Broderson site was detected hydraulically downgradient beginning in June 2017.

⁶This Table was reproduced (with slight edits) from Table 2 of the LOBP.

⁷Cleath & Associates, 2000, Hydrogeologic Investigation of the Broderson Site, Phase 2 Impacts Assessment, prepared for Los Osos Community Services District, November 2000.

As of 2022, it is estimated that the Broderson mound has reached 50% of its anticipated maximum height. Additional information on the current status of the Broderson Mound can be found in Section 7.2 Water Level Hydrographs of this Annual Report.

The BMC received final notification of obtaining grant funding in Calendar Year 2023 for the development of a Transient Groundwater Model and completion of a recycled water and supplemental water supply alternatives study. This study is intended to analyze benefits of delivering recycled water to Broderson, Bay Ridge, Sea Pines and/or other future locations (e.g. ag reuse, school landscape irrigation, Los Osos Creek, etc.). It will additionally evaluate opportunities to utilize recycled for Indirect and Direct Potable Reuse to improve water supply conditions in the Basin.

10.3.4 Basin Infrastructure Programs

Implementation of the Basin Infrastructure Program is designed to reduce Purveyor groundwater production from the Lower Aquifer in the Western Area and replace it with additional pumping from the Upper Aquifer and Central and Eastern Areas. This shift is anticipated to increase the Basin's Sustainable Yield, which in turn will help lower or improve the Basin Yield Metric if groundwater production does not increase.

The Program is divided into four parts, designated Programs A through D. Programs A and B shift groundwater production from the Lower Aquifer to the Upper Aquifer, and Programs C and D shift production within the Lower Aquifer from the Western Area to the Central and Eastern Areas, respectively. A fifth program, Program M, was also established in the LOBP for the development of a Groundwater Monitoring Program (See Chapter 7 of the BMP), and new Lower Aquifer monitoring wells in the Cuesta by the Sea area and at the eastern end of Skyline Drive were completed in 2019 and 2023 respectively. Table 27 provides an overview of the status of the Projects that are currently moving forward or have been completed. Note, no projects are currently moving forward in Program D, thus they are not shown in Table 27.

10.3.5 Wellhead Protection Program

The Wellhead Protection Program is designed to protect water quality in the Basin by managing activities within a delineated source area or protection zone around drinking water wells. This program consists primarily of the Purveyors conducting Drinking Water Source Assessment and Protection surveys for each of their wells, as well as construction and operation of the LOWRF. The BMC will evaluate opportunities for specific actions to protect water quality in the Basin as deemed appropriate in the future, though no specific actions are recommended at this time.

Table 27. Basin Infrastructure Projects						
Project Name	Parties Involved	Funding Status	Capital Cost	Status		
		Progran	ı A			
Water Systems Interconnection	LOCSD/ GSWC			Completed		
Upper Aquifer Well (8 th Street)	LOCSD			Completed		
South Bay Well Nitrate Removal	LOCSD			Completed		
Palisades Well Modifications	LOCSD			Completed		
Blending Project (Skyline Well)	GSWC			Completed		
Water Meters	S&T			Completed		
		Progran	n B			
LOCSD Wells	LOCSD	Not Funded	BMP: \$2.7 mil	Project not initiated		
GSWC Wells	GSWC	Not Funded	BMP: \$3.2 mil	Project not initiated		
Community Nitrate Removal Facility	LOCSD/GSWC/S&T	GSWC Portion Funded	GSWC: \$1.23 mil	GSWC's Program A Blending Project might be capable of expanding to be the first phase of the Program B Community Nitrate Removal Facility.		

Project Name	Parties Involved	Funding Status	Capital Cost	Status
		Prog	gram C	
Expansion Well No. 1 (Los Olivos)	GSWC			Completed
Expansion Well No. 2	LOCSD	LOCSD	LOCSD Cost Estimate: \$3.1 mil	The well construction and transmission main are complete. Completion of all phases of the project is estimated to occur in December 2024.
Expansion Well 3 and LOVR Water Main Upgrade	GSWC/LOCSD	Cooperative Funding	BMP: \$1.6 mil	The deferral from Program C for this project was removed by the BMC on August 16 th , 2023.
LOVR Water Main Upgrade	GSWC	May be deferred	BMP: \$1.53 mil	Project may not be required, depending on the pumping capacity of the drilled Program C wells. It may be deferred to Program D.
S&T/GSWC Interconnection	S&T/ GSWC	Pending	BMP: \$30,000	Currently on hold pending further evaluation of the project.

Project Name	Parties	Funding	Capital Cost	Status
	Involved	Status		
		Prog	ram M	
New Zone D/E Lower Aquifer monitoring well in Cuesta by the Sea	All Parties			Completed
New Zone D/E Lower Aquifer monitoring wells at the eastern end of Skyline Drive	All Parties			Completed
		Progr	ram U	
Creek Discharge Program	All Parties		TBD	These activities are currently on hold. The Transient Model and Water Recycling Funding Study are intended to better inform the BMC on the most effective opportunities for increasing the Sustainable Yield of the Basin.
8 th and El Moro Urban Storm Water Recovery Project	All Parties		TBD	These activities are currently on hold. The Transient Model and Water Recycling Funding Study are intended to better inform the BMC on the most effective opportunities for increasing the Sustainable Yield of the Basin.

11. REFERENCES

- Burt, C.M., Mutziger, A., Howes, D.J., and Solomon, K.H., 2002, <u>Evaporation from Irrigated Agricultural Land in California</u>, January.
- Brown and Caldwell, 1983, <u>Los Osos Baywood Park Phase I Water Quality Management Study</u>, prepared for San Luis Obispo Service Area No. 9, April 1983.
- Carollo, 2012, San Luis Obispo County Master Water Report, prepared for the San Luis Obispo County Flood Control and Water Conservation District, May 2012. http://www.slocountywater.org/site/Frequent%20Downloads/Master%20Water%20Plan/
- Central Coast Regional Water Quality Control Board (CCRWQCB), 2011, Waste Discharge/Recycled Water Requirements for the Los Osos Water Recycling Facility, San Luis Obispo County, Order No. R3-2011-001, May 5.
- https://www.waterboards.ca.gov/centralcoast/board_decisions/adopted_orders/2011/2011_0001_wdr_order.pdf.
- Cleath & Associates, 2000, <u>Hydrogeologic Investigation of the Broderson Site</u>, Phase 2 <u>Impacts</u> Assessment, prepared for the Los Osos Community Services District, November 2000.
- Cleath & Associates, 2003, <u>Geologic Structure of the Los Osos Valley Ground Water Basin</u>, prepared for the Los Osos Community Services District, November 2003.
- Cleath & Associates, 2005, <u>Sea Water Intrusion Assessment and Lower Aquifer Source Investigation of the Los Osos Valley Ground Water Basin, San Luis Obispo County, California, prepared for the Los Osos Community Services District, October 2005.</u>
- Cleath & Associates, 2006, <u>Task 3 Upper Aquifer Water Quality Characterization</u>, prepared for the Los Osos Community Services District, June 2006.
- Cleath & Associates, 2002-2006, <u>Quarterly and Semi-Annual Groundwater Monitoring Reports for the Los Osos Nitrate Monitoring Program</u>, prepared for the Los Osos Community Services District.
- Cleath-Harris Geologists, 2009a, <u>Flow Model Conversion and Urban Area Yield Update</u>, Technical Memorandum prepared for the Los Osos ISJ Group, July 29, 2009.
- Cleath-Harris Geologists, 2009b, Water Use Estimates for Private Domestic Wells, Technical Memorandum prepared for the Los Osos ISJ Group, July 29, 2009.
- Cleath-Harris Geologists, 2009c, <u>Water Use Estimates for Los Osos Creek Valley Irrigation Wells</u>, Technical Memorandum prepared for the Los Osos ISJ Group, July 29, 2009.

- Cleath-Harris Geologists, 2010, <u>Water Quality Monitoring Results Summary</u>, <u>November 2009-January 2010</u>, <u>Los Osos Valley Groundwater Basin</u>, Technical Memorandum prepared for the Los Osos ISJ Group, April 26, 2010.
- Cleath-Harris Geologists, 2012, <u>Los Osos Water Recycling Facility Baseline Groundwater</u>
 <u>Quality Monitoring, August 2012</u>, prepared for San Luis Obispo County Department of Public Works, October 2012.
- Cleath-Harris Geologists, 2013, Los Osos Water Recycling Facility Baseline Groundwater Quality Monitoring, June 2013, prepared for San Luis Obispo County Department of Public Works, July 2013.
- Cleath-Harris Geologists, 2014, <u>Seawater Intrusion Monitoring</u>, <u>Los Osos Valley Groundwater</u> <u>Basin</u>, Technical Memorandum, prepared for the Los Osos ISJ Group, October 7, 2014.
- Cleath-Harris Geologists, 2015a, <u>April 2015 Lower Aquifer Monitoring</u>, <u>Los Osos Groundwater Basin</u>, Draft Technical Memorandum prepared for the Los Osos ISJ Group, May 26, 2015.
- Cleath-Harris Geologists, 2015b, October 2015 Lower Aquifer Monitoring, Los Osos Groundwater Basin, Technical Memorandum prepared for the Los Osos ISJ Group, December 28, 2015.
- Cleath-Harris Geologists, 2015c, <u>Los Osos Water Recycling Facility Baseline Groundwater</u>
 <u>Quality Monitoring, May 2015</u>, prepared for San Luis Obispo County Department of Public Works, June 2015.
- Cleath-Harris Geologists, 2015d, <u>Los Osos Water Recycling Facility Baseline Groundwater</u>
 <u>Quality Monitoring, November 2015</u>, prepared for San Luis Obispo County Department of Public Works, December 2015.
- Cleath-Harris Geologists, 2016a, <u>Los Osos Valley Groundwater Basin Boundary Modification</u>
 <u>Request</u>, Technical Memorandum prepared for San Luis Obispo County Department of Public Works, March 25, 2016.
- http://sgma.water.ca.gov/basinmod/docs/download/2071
- Cleath-Harris Geologists, 2016b, Los Osos Basin Plan, Groundwater Monitoring Program 2015

 Annual Monitoring Report, prepared in association with Wallace Group for the Los Osos
 Groundwater Basin Management Committee, September 2016.
- $\frac{https://www.slocounty.ca.gov/Departments/Public-Works/Forms-Documents/Committees-Programs/Los-Osos-Basin-Management-Committee-(BMC)/Annual-Reports.aspx}{}$

- Cleath-Harris Geologists, 2017, Los Osos Basin Plan, Groundwater Monitoring Program 2016

 Annual Monitoring Report, prepared for the Los Osos Groundwater Basin Management Committee, June 2017.
- $\frac{https://www.slocounty.ca.gov/Departments/Public-Works/Forms-Documents/Committees-Programs/Los-Osos-Basin-Management-Committee-(BMC)/Annual-Reports.aspx}{}$
- Cleath-Harris Geologists, 2018a, <u>Los Osos Basin Plan, Groundwater Monitoring Program 2017</u>
 <u>Annual Monitoring Report</u>, prepared for the Los Osos Groundwater Basin Management Committee, June 2017.
- $\frac{https://www.slocounty.ca.gov/Departments/Public-Works/Forms-Documents/Committees-Programs/Los-Osos-Basin-Management-Committee-(BMC)/Annual-Reports.aspx}{}$
- Cleath-Harris Geologists, 2018b, <u>Los Osos Valley Groundwater Basin Fringe Areas Characterization</u>, prepared for San Luis Obispo County Flood Control and Water Conservation District, May 2017.
- Cleath-Harris Geologists, 2018c, <u>Los Osos Valley Groundwater Basin Boundary Modification</u>
 <u>Request</u>, prepared for San Luis Obispo County Flood Control and Water Conservation District, September 2018.
- Cleath-Harris Geologists, 2019a, <u>Lower Aquifer nitrate concentrations trends review and LA11 seawater intrusion evaluation</u>, prepared for the Los Osos Groundwater Basin Management Committee, November 6, 2019.
- Cleath-Harris Geologists, 2019b, <u>Los Osos Basin Plan Metric Trends Review and Infrastructure</u>

 <u>Program C</u>, prepared for the Los Osos Groundwater Basin Management Committee, February 28, 2019.
- Cleath-Harris Geologists, 2019c, <u>Los Osos Basin Plan, Groundwater Monitoring Program 2018</u>
 <u>Annual Monitoring Report</u>, prepared for the Los Osos Groundwater Basin Management Committee, June 2019.
- $\frac{https://www.slocounty.ca.gov/Departments/Public-Works/Forms-Documents/Committees-Programs/Los-Osos-Basin-Management-Committee-(BMC)/Annual-Reports.aspx}{}$
- Cleath-Harris Geologists, 2020, Los Osos Basin Plan, Groundwater Monitoring Program 2019

 Annual Monitoring Report, prepared for the Los Osos Groundwater Basin Management Committee, June 2020.
- $\frac{https://www.slocounty.ca.gov/Departments/Public-Works/Forms-Documents/Committees-Programs/Los-Osos-Basin-Management-Committee-(BMC)/Annual-Reports.aspx}{}$

- Cleath-Harris Geologists, 2021a, <u>Los Osos Basin Plan, Groundwater Monitoring Program 2020</u>

 <u>Annual Monitoring Report</u>, prepared for the Los Osos Groundwater Basin Management Committee, June 2021.
- https://www.slocounty.ca.gov/Departments/Public-Works/Forms-Documents/Committees-Programs/Los-Osos-Basin-Management-Committee-(BMC)/Annual-Reports.aspx
- Cleath-Harris Geologists, 2021b, <u>Nitrate Source Investigation at S&T Lower Aquifer Well LA8</u>, <u>Los Osos Groundwater Basin</u>, prepared for S&T Mutual Water Company, September 24, 2 021 (revised 10/5/21).
- Cleath-Harris Geologists, 2022a, <u>Los Osos Basin Plan, Groundwater Monitoring Program 2021</u>
 <u>Annual Monitoring Report</u>, prepared for the Los Osos Groundwater Basin Management Committee, June 2022.
- https://www.slocounty.ca.gov/Departments/Public-Works/Forms-Documents/Committees-Programs/Los-Osos-Basin-Management-Committee-(BMC)/Annual-Reports.aspx
- Cleath-Harris Geologists, 2022b, <u>Recommendations for Well Modification and New Monitoring Well Locations for the Los Osos BMC Groundwater Monitoring Program</u>, draft Technical Memorandum, July 22, 2022.
- Cleath-Harris Geologists, 2023a, Los Osos Creek Rating Curve Development and Stage Data processing, Draft Technical Memorandum, October 3, 2023.
- Cleath-Harris Geologists, 2023b, <u>Los Osos Basin Plan, Groundwater Monitoring Program 2022</u>

 <u>Annual Monitoring Report</u>, prepared for the Los Osos Groundwater Basin Management Committee, June 2023.
- $\frac{https://www.slocounty.ca.gov/Departments/Public-Works/Forms-Documents/Committees-Programs/Los-Osos-Basin-Management-Committee-(BMC)/Annual-Reports.aspx}{}$
- Department of Water Resources (DWR), State of California, 1973, Los Osos Baywood Ground Water Protection Study, Southern District Report, October 1973.
- Department of Water Resources (DWR), State of California, 1979, Morro Bay Sandspit Investigation, Southern District Report, August 1979.
- Department of Water Resources (DWR), State of California, 2014, <u>California Groundwater Elevation Monitoring Basin Prioritization Process, Appendix A</u>, June 2014.
- Department of Water Resources (DWR), State of California, 2016, <u>California's Groundwater</u>, <u>Working Toward Sustainability</u>, Bulletin 118 Interim Update 2016, December 22, 2016. https://water.ca.gov/Programs/Groundwater-Management/Bulletin-118

Department of Water Resources (DWR), State of California, 2018a, <u>Bulletin 118 Groundwater</u>
<u>Basins Subject to Critical Conditions of Overdraft – Update based on 2018 Final Basin</u>
Boundary Modifications.

https://water.ca.gov/Programs/Groundwater-Management/Bulletin-118

Department of Water Resources (DWR), State of California, 2018b, <u>Basin Boundary Modification</u>
Request System – San Luis Obispo County 3-008 Los Osos Valley
https://sgma.water.ca.gov/basinmod/basinrequest/preview/238

Department of Water Resources (DWR), State of California, 2019, <u>Basin Boundary Modifications</u>
– Final Decisions, February 11, 2019.

https://water.ca.gov/Programs/Groundwater-Management/Bulletin-118

Department of Water Resources (DWR), State of California, 2021, California's Groundwater – Update 2020. November 17, 2021.

https://water.ca.gov/Programs/Groundwater-Management/Bulletin-118

Freeze, R. A., and Cherry, J. A., 1979, Groundwater, Prentice-Hall, 604 p.

ISJ Group, 2015, <u>Updated Basin Plan for the Los Osos Groundwater Basin</u>, January 2015, <u>http://www.slocountywater.org/site/Water%20Resources/LosOsos/pdf/Los%20Osos%20Groundwater%20Basin%20Plan%20January%202016.pdf</u>

Los Osos Community Services District v. Southern California Water Company [Golden State Water Company] et al. (San Luis Obispo County Superior Court Case No. CV 040126).

Maddaus Water Management, 2023, <u>Los Osos Water Offset Study</u>, prepared for San Luis Obispo County Planning and Building, June 28, 2023.

Metcalf & Eddy, 1995, <u>Task F – Sanitary Survey and Nitrate Study</u>, prepared for San Luis Obispo County, March 2, 1995.

National Drought Mitigation Center / U.S. Department of Agriculture / National Oceanic and Atmospheric Association, 2023, U.S. Drought Monitor, California maps. Website access: https://droughtmonitor.unl.edu/Maps/MapArchive.aspx

Rincon Consultants, 2014, 2016-2023, <u>Semiannual, Biennial, and Annual Groundwater Quality</u>
<u>Monitoring Reports, Los Osos Water Recycling Facility</u>, prepared for San Luis Obispo County Department of Public Works, various dates.

Smith, C. T., and Griggs, A. B., 1944, <u>Chromite Deposits near San Luis Obipo, San Luis Obispo</u>
<u>County, California</u>, U. S. Geological Survey Bulletin 945-B.
https://pubs.er.usgs.gov/publication/b945B

- SWRCB, 2009, <u>Recycled Water Policy</u>, <u>adopted in Resolution No. 2009-0011 Adoption of Policy for Water Quality Control for Recycled Water</u>.
- http://www.swrcb.ca.gov/board_decisions/adopted_orders/resolutions/2009/rs2009_0011.pdf
 San Luis Obispo County Engineering Department, 1999, Baywood Groundwater Study, Fourth
 Quarter 1998, January 21, 1999.
- San Luis Obispo County Public Works Department, 2005, Water Years 2001-02 and 2002-03 Hydrologic Report, May 16, 2005.
- $\underline{\text{http://slocountywater.org/site/Water\%20Resources/Reports/pdf/Hydrologic\%20Report\%202002.}}\\ pdf$
- San Luis Obispo County Public Works Department, 2021a, <u>Los Osos Water Recycling Facility</u>
 <u>Laboratory Report for CEC Blue Ribbon</u>, prepared by Eurofins-Eaton Analytical,
 November 23, 2021.
- San Luis Obispo County Public Works Department, 2021b, <u>Los Osos Water Recycling Facility</u> 2021 Annual Report.
- Stetson Engineers, 2010, Peer Review of the Los Osos Groundwater Model, TM dated May 3, 2010.
- Yates, E.B., and Wiese, J. H., 1988, <u>Hydrogeology and Water Resources of the Los Osos Valley</u>
 <u>Ground-Water Basin, San Luis Obispo County, California,</u> U. S. Geological Survey,
 Water-Resources Investigations Report 88-4081.
- http://pubs.usgs.gov/wri/1988/4081/report.pdf

APPENDIX A

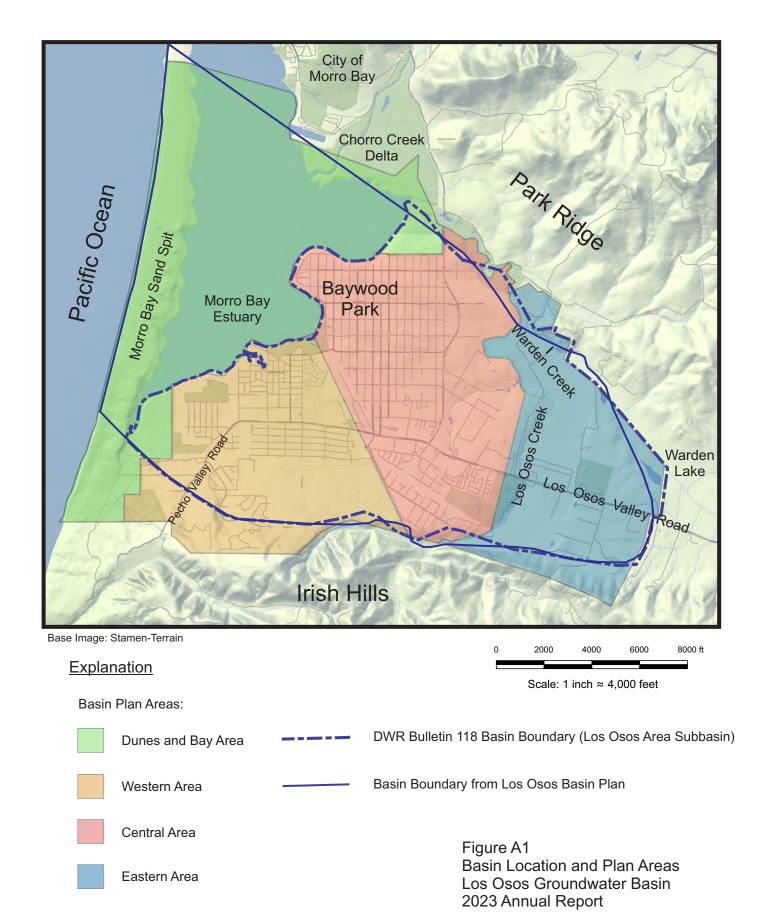
Groundwater Monitoring History

Groundwater Monitoring History

Groundwater monitoring has been performed by public agencies, water purveyors, and consultants for various Basin studies and programs over several decades. The following lists include historical investigations, monitoring reports, and monitoring programs with a major focus on Basin water levels and water quality through December 31, 2023, which is the end of the period covered by this Annual Report. Figure A1 compares the scientific basin boundary used for the LOBP and prior work with the new jurisdictional boundary defined by the DWR for the Los Osos Area Subbasin.

Historical Investigations

- Los Osos-Baywood Ground Water Protection Study (DWR, 1973);
- *Morro Bay Sandspit Investigation* (DWR, 1979);
- Los Osos -Baywood Park Phase I Water Quality Management Study (Brown & Caldwell, 1983);
- Hydrogeology and Water Resources of the Los Osos Valley Ground-Water Basin, San Luis Obispo County, Water-Resources Investigation 88-4081 (U.S. Geological Survey, 1988);
- *Task F Sanitary Survey and Nitrate Source Study* (Metcalf & Eddy, 1995);
- Sea Water Intrusion Assessment and Lower Aquifer Source Investigation of the Los Osos Valley Groundwater Basin (Cleath & Associates, 2005);
- Task 3 Upper Aquifer Water Quality Characterization (Cleath & Associates, 2006);
- Los Osos Valley Groundwater Basin Fringe Areas Characterization, Technical Memorandum (CHG, 2018).
- Los Osos Valley Groundwater Basin Boundary Modification Request, Technical Memorandum (CHG, 2018).


Monitoring Reports:

- Baywood Groundwater Study Fourth Quarter 1998 (San Luis Obispo County Engineering Department, 1999);
- Quarterly and Semi-Annual Groundwater Monitoring Reports for the Los Osos Nitrate Monitoring Program (Cleath & Associates, 2002-2006)
- Water Quality Monitoring Results Summary, November 2009-January 2010, Los Osos Valley Groundwater Basin (CHG, 2010);
- Semi-Annual Groundwater Monitoring Reports for Los Osos Water Recycling Facility Baseline Groundwater Quality Monitoring (CHG, 2012-2013);
- Semi-Annual Groundwater Monitoring Reports for Los Osos Water Recycling Facility Baseline Groundwater Quality Monitoring (Rincon Consultants, 2014, 2016-2023; CHG, 2015);
- Semi-Annual Groundwater Monitoring Reports for Lower Aquifer (CHG, 2014-2015);
- Annual Groundwater Monitoring Reports for Los Osos Basin Plan (CHG, 2015, 2016, 2017, 2018, 2019, 2020, 2021);
- Consumer Confidence Reports (Water Quality Reports) published annually by the water purveyors.

Monitoring Programs:

- San Luis Obispo County Public Works, Semi-Annual Water Level Monitoring Program. Period of record for individual wells varies; most begin in 1970's and 1980's, and some end in 1999; program remains active.
- Purveyor Water Supply Well Monitoring per SWRCB-Division of Drinking Water requirements. Period of record for individual wells varies; program remains active.
- 2002-2006 Los Osos Nitrate Monitoring Program. Water levels measured quarterly to semi-annually; program ended October 2006.
- 2012-2023 Los Osos Water Recycling Facility Groundwater Monitoring Program. Water levels measured semi-annually, currently on a June and December schedule; program remains active.
- 2014-2015 Lower Aquifer Monitoring Program. Water levels measured semi-annually; program ended in 2015 (replaced by LOBP Groundwater Monitoring Program).

In addition to water quality and water level reporting, this 2023 Annual Report compiles groundwater production, precipitation, and stream flow data from water purveyors (LOCSD, GSWC, and S&T, providing metered production records) and San Luis Obispo County Department of Public Works, providing precipitation at the Los Osos Landfill and stream flow data for Los Osos Creek. Purveyor municipal production data are based on meter readings. Domestic groundwater production estimates are based on the last reported water use estimates for 2013 from the LOBP, with minor adjustments in 2016 for the inclusion of additional residences in the Eastern Area (CHG, 2016). Production estimates for community facilities and agricultural wells are based on a soil-moisture budget using local precipitation, land use, and evapotranspiration data (Appendix F).

Cleath-Harris Geologists

APPENDIX B

Los Osos Basin Plan Groundwater Monitoring Program Well Information

Los Osos Basin Plan Monitoring Well Network First Water/Perched Aquifer Group

					Coordinate	S	=		Well	Data			Aquifer			
Program ID	State Well Number	Name/Location	Basin Area	Latitude	Longitude	RP Elevation* (feet amsl)	Well Type	Current Well Owner	Screened Interval (feet bgs)	Well Depth (feet bgs)	Casing Diameter (inches)	Creek Valley Alluvium	Zone A/B	Zone C	Zone D	Zone E
FW1	30S/10E-13A7							PRIVATE								
FW2	30S/10E-13L8	Howard/ Del Norte	Western	35.3149	120.8552	32.63	MW	LOCSD	26-36	37	2			x		
FW3	30S/10E-13G	South Court	Western	35.3162	120.8498	50.95	MW	LOCSD	47-52	54	2			x		
FW4	30S/10E-13H	Broderson/Skyline	Western	35.3158	120.8432	49.33	MW	LOCSD	154-164	164	2			x		
FW5	30S/10E-13Q2	Woodland Dr.	Western	35.3119	120.8495	101.27	MW	LOCSD	97-100	105	2			X		
FW6	30S/10E-24A	Highland/Alexander	Western	35.3083	120.8453	193.04	MW	LOCSD	154-164	164	2			x		
FW7	30S/10E-24Ab	Broderson leach field	Western	35.3065	120.8460	255	MW	LOCSD	200-240	240	5			X		
FW8	30S/11E-7L4	Santa Ysabel/5th	Central	35.3302	120.8377	45.76	MW	LOCSD	40-50	50	2			х		
FW9	30S/11E-7K3	12th/ Santa Ysabel	Central	35.3299	120.8300	90.71	MW	LOCSD	55-65	70	2			X		
FW10	30S/11E-7Q1	LOCSD 8th Street - shallow	Central	35.3260	120.8342	25.29	MW	LOCSD	29-43, 54-75	75	8			X		
FW11	30S/11E-7R2	El Moro/12th St.	Central	35.3263	120.8298	61.93	MW	LOCSD	25-35	35	2			х		
FW12	30S/11E-18C2	Pismo Ave./ 5th St.	Central	35.3227	210.8376	34.55	MW	LOCSD	25-35	35	2			х		
FW13	30S/11E-18B2	Ramona/10th	Central	35.3208	120.8320	79.89	MW	LOCSD	25-35	35	2		х			
FW14	30S/11E-18E1							PRIVATE								
FW15	30S/11E-18N2	Manzanita/Ravenna	Central	35.3109	120.8401	125.53	MW	LOCSD	85-95	95	2		х			
FW16	30S/11E-18L11	Palisades Ave.	Western	35.3138	120.8374	88.02	MW	LOCSD	43-53	53	2		х			
FW17	30S/11E-18L12	Ferrell Ave.	Central	35.3138	120.8346	103.85	MW	LOCSD	25-35	35	2		х			
FW18	30S/11E-18P	Sunnyside #1	Western	35.3095	120.8352	143.92	MW	SLCUSD	15-35	35	2		х			
FW19	30S/11E-18J7	Los Olivos/Fairchild	Central	35.3130	120.8271	125.74	MW	LOCSD	25-35	35	2		х			
FW20	30S/11E-8Mb	Santa Maria/18th Street	Central	35.3287	120.8233	94.75	MW	LOCSD	37-47	47	2		х			
FW21	30S/11E-8N4	South Bay Blvd. OBS	Central	35.3253	120.8213	95.99	MW	LOCSD	40-50	50	2		х			
FW22	30S/11E-17F4							PRIVATE								
FW23	30S/11E-17N4							PRIVATE								
FW24	30S/11E-17J2	USGS Eto North - shallow	Eastern	35.3142	120.8119	84.95	MW	PRIVATE ¹	50-70	70	2			х		
FW25	30S/11E-17R1							PRIVATE								
FW26	30S/11E-20A2							PRIVATE								
FW27	30S/11E-20L1							PRIVATE								
FW28	30S/11E-20M2							PRIVATE								
FW29	30S/11E-20A1		1					PRIVATE								
FW30	30S/11E-18R1							PRIVATE								
FW31	30S/11E-19A	Bayridge Field #2	Central	35.3066	120.8276	214.67	MW	LOCSD	18-38	38	4		Х			†
FW32	30S/11E-21D14	, , ,				,		PRIVATE								1
	30S/11E-18D1S							PRIVATE								1

¹ FW24 is former USGS monitorng well (information in public domain)

*NAVD 88 Datum	MW = Monitoring Well

State Well Numbers for Reconstructed Wells

	NEW (2002)	OLD (1982)
FW2	30S/10E-13L8	30S/10E-13L5
FW5	30S/10E-13Q2	30S/10E-13Q1
FW8	30S/11E-7L4	30S/11E-7L3
FW9	30S/11E-7K3	30S/11E-7K2
FW11	30S/11E-7R2	30S/11E-7R1
FW12	30S/11E-18C2	30S/11E-18C1
FW13	30S/11E-18B2	30S/11E-18B1
FW15	30S/11E-18N2	30S/11E-18N1
FW16	30S/11E-18L11	30S/11E-18L3
FW17	30S/11E-18L12	30S/11E-18L4
FW19	30S/11E-18J7	30S/11E-18J6
FW21	30S/11E-8N4	30S/11E-8N2

Los Osos Basin Plan Monitoring Well Network Upper Aquifer Group

					Coordinate	s	=		Well	Data			Aquifer			
Program ID	State Well Number	Name/Location	Basin Area	Latitude	Longitude	RP Elevation* (feet amsl)	Well Type	Current Well Owner	Screened Interval (feet bgs)	Well Depth (feet bgs)	Casing Diameter (inches)	Creek Valley Alluvium	Zone A/B	Zone C	Zone D	Zone E
UA1	30S/10E-11A1	Sandspit #1 West	Dunes and bay	35.3358	120.8638	16.01	MW	SLO CO.	150-160	160	2			x		
UA2	30S/10E-14B1	Sandspit #3 Shallow	Dunes and bay	35.3219	120.8682	23.90	MW	SLO CO.	190-200	190-200 200 1.5				X		
UA3	30S/10E-13F1	GSWC Skyline #1	Western	35.3165	120.8533	17.57	M	GSWC	90-195	206	14			X		
UA4	30S/10E-13L1	S&T Mutual #1	Western	35.3148	120.8531	40.31	M	S&T	100-141	141	8			X		
UA5	30S/11E-7N1	LOCSD 3rd St. Well	Central	35.3256	120.8401	10.66	M	LOCSD	56-84	80	8			X		
UA6	30S/11E-18L8	USGS Palisades OBS East 2"	Western	35.3149	120.8381	79.18	MW	SLO CO.	100-140	140	2			X		
UA7	30S/11E-18L7	USGS Palisades OBS West 2"	Western	35.3149	120.8381	79.16	MW	SLO CO.	180-220	220	2			X		
UA8	30S/11E-18K7	LOCSD 10th St. Observation West	Central	35.3130	120.8326	137.17	MW	LOCSD	200-220	220	2			X		
UA9	30S/11E-18K3	GSWC Los Olivos #3	Central	35.3133	120.8300	123.42	M	GSWC	148-202, 222-232	232	8			x		
UA10	30S/11E-18H1	LOCSD - 12th St.	Central	35.3161	120.8297	110.02	М	LOCSD	112-125, 145-159, 172-186, 216-231	232	10			х		
UA11	30S/11E-17D							PRIVATE								
UA12	30S/11E-17E9	So. Bay Blvd OBS shallow	Central	35.3158	120.8240	107.39	MW	LOCSD	184-194	204	2			х		
UA13	30S/11E-17E10	LOCSD South Bay upper	Central	35.3159	120.8239	107.81	M	LOCSD	170-210	220	8			Х		
UA14	30S/11E-17P4							PRIVATE								
UA15	30S/11E-20B7							PRIVATE								
UA16	30S/11E-17L4							PRIVATE								
UA17	30S/11E-17E10							PRIVATE								
UA18	30S/11E-17F2							PRIVATE								
UA19	30S/11E-7Q	LOCSD 8th Street - shallow	Central	35.3259	120.8341	26.80	M	LOCSD						X		

*NAVD 88 Datum	M = Municipal
	MW = Monitoring Well

					Coordinate	s		_	Well			Aquifer				
Program ID	State Well Number	Name/Location	Basin Area	Latitude	Longitude	RP Elevation* (feet amsl)	Well Type	Well Owner	Screened Interval (feet bgs)	Well Depth (feet bgs)	Casing Diameter (inches)	Creek Valley Alluvium	Zone A/B	Zone C	Zone D	Zone E
LA1	30S/10E-2A1	Sandspit #2 North	Dunes and Bay	35.3530	120.8617	23.13	MW	SLO CO.	220-230	230	2					х
LA2	30S/10E-11A2	Sandspit #1 East	Dunes and Bay	35.3358	120.8638	16.07	MW	SLO CO.	234-244	244	2				х	
LA3	30S/10E-14B2	Sandspit #3 Deep	Dunes and Bay	35.3219	120.8682	23.89	MW	SLO CO.	270-280	280	2				х	
LA4	30S/10E-13M1	USGS Howard West	Western	35.3149	120.8597	42.70	MW	PRIVATE	477-537	820	6					Х
LA5	30S/10E-13L7	S&T Mutual #4	Western	35.3146	120.8531	37.87	M	S&T	160-300	300	8					
LA6	30S/10E-13L4	GSWC Pecho #1	Western	35.3129	120.8522	70.02	M	GSWC	240-380	675	14				X	
LA7	30S/10E-13P2							PRIVATE								
LA8	30S/10E-13N	S&T Mutual #5	Western	35.3088	120.8565	141.36	M	S&T	260-340	350	8				x	
LA9	30S/10E-24C1	GSWC Cabrillo #1	Western	35.3077	120.8552	180.34	M	GSWC	250-500	508	10				x	
LA10	30S/10E-13J1	GSWC Rosina #1	Western	35.3145	120.8468	98.33	M	GSWC	290-406	409	10				x	X
LA11	30S/10E-12J1	Morro Bay Observation #5	Central	35.3299	120.8440	8.43	MW	SLO CO.	349-389	389	2					X
LA12	30S/11E-7Q3	LOCSD 8th St. Lower	Central	35.3259	120.8342	27.75	M	LOCSD	230-270	270	10				X	
LA13	30S/11E-18F2	LOCSD Ferrell #2	Central	35.3159	120.8358	103.57	MW	LOCSD	510-530	530	2.5					X
LA14	30S/11E-18L6	USGS Palisades OBS 6"	Western	35.3149	120.8381	79.52	MW	SLO CO.	355-375, 430- 480, 550-600	620	6				x	x
LA15	30S/11E-18L2	LOCSD Palisades	Western	35.3136	120.8377	88.08	M	LOCSD	340-380	394	12				х	
LA16	30S/11E-18M1	Former CCW #5 - Broderson OBS	Western	35.3128	120.8430	108.74	MW	PRIVATE	330-355, 395- 415, 465-505, 530- 575	577	10				х	х
LA17	30S/11E-24A2	USGS Broderson	Western	35.3074	120.8433	212.82	MW	SLO CO.	800-860 (collapsed 440- 480)	860	6				х	x
LA18	30S/11E-18K8	10th St. Observation East	Central	35.3130	120.8325	137.13	MW	LOCSD	630-650	650	2					X
LA19	30S/11E-19H2	USGS Bayview Heights 6"	Central	35.3043	120.8266	257.35	MW	SLO CO.	280-380	740	6				x	
LA20	30S/11E-17N10	GSWC South Bay #1	Central	35.3111	120.8240	141.22	M	GSWC	225-295, 325- 395, 485-695	715	12			x	x	х
LA21	30S/11E-17E7	So. Bay Blvd OBS deep #3	Central	35.3158	120.8240	107.22	MW	LOCSD	480-490, 500-510	520	2					x
LA22	30S/11E-17E8	So. Bay Blvd OBS middle #2	Central	35.3158	120.8240	107.27	MW	LOCSD	270-280, 370-380	390	2				х	
LA23	30S/11E-17C1							PRIVATE								
LA24	30S/11E-17J1	USGS Eto North - deep	Eastern	35.3142	120.8119	87.00	I	PRIVATE ¹	160-190, 245-260	260	6				x	х
LA25	30S/11E-20Aa							PRIVATE								<u> </u>
LA26	30S/11E-20G2	USGS Eto South	Eastern	35.3037	120.8131	99.66	I	PRIVATE ¹	300-360	370	6					x
LA27	30S/11E-16Nb							PRIVATE								
LA28	30S/11E-16Na							PRIVATE								
LA29	30S/11E-21E3							PRIVATE								
LA30	30S/11E-20H1							PRIVATE								
LA31	30S/11E-13M2	10000 101 0	G	25.511	120 222	125 :-	L_	PRIVATE	225 256 256	4			<u> </u>	1		
LA32	30S/11E-18K9	LOCSD 10th Street Production	Central	35.3103	120.8325	137.17	M	LOCSD	235-270, 350-49	490	14		ļ	X	X	₽
LA33	30S/11E-17A1			25.2261	120 00	2515		PRIVATE	25.5.45.5	45.5				 		₩
LA34	30S/11E-8F	Los Osos Landfill MW-11	Eastern	35.3201	120.8052	26.15	MW	SLO CO.	37.5-47.5	47.5				 	X	\vdash
LA35	30S/11E-21Bb	LOWRF South Well	Eastern	35.3076	120.7993	86.8	Ind	SLO CO.	180-230	230	-	-		1		X
LA36	30S/11E-21Ja	A 1 337 1 31 337 H	Б	25 20 60	120 707 5	01.61	7 633.	PRIVATE						-		₩
LA37	30S/11E-21B1	Andre Windmill Well	Eastern	35.3069	120.7976	81.61	MW	SLO CO.			6	-		1		X
LA38	30S/11E-21E	Las Oliasa #5	Comp. 1			100.17	3.5	PRIVATE	225 265 205 151	470	10	-		1		₩
LA39	30S/11E-18K_	Los Olivos #5	Central	25 21066	120 0470	123.17	M	GSWC LOCSD	335-365, 385-450	470	12		-	1	X	+
LA40	30S/10E-13Ba	Lupine Zone E	Western	35.31966	120.8478	11.47	MW	LOCOD	390-410 310-330	490	2.5	ı	Ī	1		X

¹ LA24 amd LA26 are former USGS monitorng wells (information in public domain)

*NAVD 88 Datum	M = Municipal
	MW = Monitoring Well
	Ind = Industrial Well
	I = Irrigation

Los Osos Basin Plan Monitoring Well Network 2023 FIRST WATER

Program Well ID	Well Owner	Basin Plan Monitoring Code	County Water Level Program	LOWRF Groundwater Monitoring Program ¹	2023 Basin Plan Monitoring Program ²	
FW1	PRIVATE	L			(no access)	
FW2	LOCSD	L, G		L, G	L	
FW3	LOCSD	L		L	L	
FW4	LOCSD	L		L	L	
FW5	LOCSD	L		L	L, CEC	
FW6	LOCSD	TL, G, CEC		G	TL, G, CEC	
FW7	LOCSD	L			٦	
FW8	LOCSD	L		L	L	
FW9	LOCSD	L		L	L	
FW10	LOCSD	TL, G		G	TL	
FW11	LOCSD	L		L	L	
FW12	LOCSD	L		L	L	
FW13	LOCSD	L		L	٦	
FW14	PRIVATE	L		L	L	
FW15	LOCSD	L, G		L,G	L	
FW16	LOCSD	L		L	L	
FW17	LOCSD	L, G		L,G	L	
FW18	SLCUSD	L			L	
FW19	LOCSD	L		L	L	
FW20	LOCSD	L, G		L, G	L	
FW21	LOCSD	L		L	L	
FW22	PRIVATE	L, G		L, G	L	
FW23	PRIVATE	L		L	L	
FW24	PRIVATE	L	L			
FW25	PRIVATE	L	L			
FW26	PRIVATE	L, G, CEC			L	
FW27	PRIVATE	TL			TL	
FW28	PRIVATE	L, G	L		G	
FW29	PRIVATE	(added in 2015)	L			
FW30	PRIVATE	(added in 2015)		L		
FW31	SLO CO.	(added in 2015)			L	
FW32	PRIVATE	(added in 2017)			L	
FW33	PRIVATE	(added in 2018)			L	

L = WATER LEVEL
G = GENERAL MINERAL
CEC = CONSTITUENTS OF EMERGING CONCERN
TL = TRANSDUCER WATER LEVEL

LOCSD = Los Osos Community Services District
SLCUSD = San Luis Coastal Unified School District
SLO CO. = San Luis Obispo County

NOTES:

- 1 Summer and winter monitoring schedule
- 2 Spring and Fall water levels, water quality in Fall only

Los Osos Basin Plan Monitoring Well Network 2023 UPPER AQUIFER

Program Well ID	Well Owner	Basin Plan Monitoring Code	County Water Level Program	LOWRF Groundwater Monitoring Program ¹	2023 Basin Plan Monitoring Program ²
UA1	SLO CO.	L	L		
UA2	SLO CO.	L	L		
UA3	GSWC	L, G			L, G
UA4	S&T	TL			TL
UA5	LOCSD	L		L	L
UA6	SLO CO.	L	L		
UA7	SLO CO.	L	L		
UA8	LOCSD	L			L
UA9	GSWC	L, G			L, G
UA10	LOCSD	TL			TL
UA11	PRIVATE	L		L	L
UA12	LOCSD	L		L	L
UA13	LOCSD	L, G			L, G
UA14	PRIVATE	L			L
UA15	PRIVATE	L			L
UA16	PRIVATE	(added in 2015)	L		
UA17	PRIVATE	(added in 2015)	L		_
UA18	PRIVATE	(added in 2015)	L		
UA19	LOCSD	(added in 2019)			L

L = WATER LEVEL
G = GENERAL MINERAL
TL = TRANSDUCER WATER LEVEL

LOCSD = Los Osos Community Services District SLO CO. = San Luis Obispo County GSWC = Golden State Water Company S&T = S&T Mutual Water Company

NOTES:

- 1 Summer and winter monitoring schedule
- 2 Spring and Fall water levels, water quality in Fall only

Los Osos Basin Plan Monitoring Well Network 2023 LOWER AQUIFER

Program Well ID	Well Owner	Basin Plan Monitoring Code	County Water Level Program	2023 Basin Plan Monitoring Program ¹
LA1	SLO CO.	L	L	
LA2	SLO CO.	L	L	
LA3	SLO CO.	L	L	
LA4	PRIVATE	L, GL		L
LA5	S&T	L	L	
LA6	GSWC	L, G	L	TL
LA7	PRIVATE	TL		
LA8	S&T	L, G		L,G
LA9	GSWC	L		L,G
LA10	GSWC	L, G		L,G
LA11	SLO CO.	L, G		TL,G
LA12	LOCSD	L, G		L,G
LA13	LOCSD	TL		TL,G
LA14	SLO CO.	L, GL	L	TL
LA15	LOCSD	L, G		L,G
LA16	PRIVATE	L	L	TL
LA17	SLO CO.	L	L	
LA18	LOCSD	L, G		L,G
LA19	SLO CO.	L	L	TL
LA20	GSWC	L, G		L,G
LA21	LOCSD	L	L	
LA22	LOCSD	L	L	G
LA23	PRIVATE	L, G		no access
LA24	PRIVATE	L	L	
LA25	PRIVATE	L		L
LA26	PRIVATE	L	L	
LA27	PRIVATE	TL		L
LA28	PRIVATE	L, G		L
LA29	PRIVATE	L	L	
LA30	PRIVATE	L, G		L,G
LA31	PRIVATE	(added in 2015)	L	G
LA32	LOCSD	(added in 2015)	L	G
LA33	PRIVATE	(added in 2015)	L	
LA34	SLO CO.	(added in 2015)	L	
LA35	SLO CO.	(added in 2015)		L
LA36	PRIVATE	(added in 2015)		no access
LA37	SLO CO.	(added in 2017)		TL
LA38	PRIVATE	(added in 2017)		L
LA39	GSWC	(added in 2019)		L,G
LA40	LOCSD	(added in 2019)		L,G
LA41	LOCSD	(added in 2019)		L,G

L = WATER LEVEL LOCSD = Los Osos Community Services District

G = GENERAL MINERAL SLO CO. = San Luis Obispo County
GL = GEOPHYSICAL LOG (triennial) GSWC = Golden State Water Company
TL = TRANSDUCER WATER LEVEL S&T = S&T Mutual Water Company

^{1 -} Water level and water quality both Spring and Fall

APPENDIX C

Field Logs and Laboratory Analytical Reports for 2023 BMC Monitoring

Note: There are no Groundwater Monitoring Field Logs for Wells LA9, LA10, LA20, UA9, and UA3; These wells were sampled by owner (GSWC).

Date: 4/13/2023	
Operator: I. Pitsillide	
Well number and location:	30S/11E-13N (LA8)
Site and wellhead conditions:	Site secure.
Static water depth (feet):	133.5
Well depth (feet):	350
Water column (feet):	216.5
Casing diameter (inches):	8
Minimum purge volume (gal)	flush line
Purge rate (gpm):	200
Pumping water level (feet):	<u></u>
Pump setting (feet):	
Minimum purge time (min):	flush line
Time begin purge:	12:03 PM

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
12:04	0	411.0	8.48	18.3	Clear, colorless, odorless
12:05	1	404.2	8.32	18.5	Clear, colorless, odorless
12:06	2	405.0	8.23	18.5	Clear, colorless, odorless
12:07	3	405.5	8.17	18.3	Clear, colorless, odorless
12:08	4	404.9	8.15	18.4	Clear, colorless, odorless
12:10	5	404.8	8.09	18.3	Clear, colorless, odorless
12:12	7	404.3	7.98	18.5	Clear, colorless, odorless
12:13	8	404.8	7.95	18.5	Clear, colorless, odorless
					Sampled @ 12:14

^{*}Turbidity, color, odor, sheen, debris, etc.

Date: 4/13/2023

Operator: I. Pitsillides and J. Raney

Well number and location: 30S/10E-12J1 (LA11)

Site and wellhead conditions: Sunny and cap in place.

Static water depth (feet):	1.69
Well depth (feet):	384
Water column (feet):	382.3
Casing diameter (inches):	2
Minimum purge volume (gal)	190
Purge rate (gpm):	2.4
Pumping water level (feet):	9.82
Pump setting (feet):	25
Minimum purge time (min):	80
Time begin purge:	9:56 AM

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
9:56	0	1,523	8.13	17	Clear, yellowish, sulphurous odor
10:00	5	1,495	7.89	18	Clear, yellowish, sulphurous odor
10:02	10	1,488	7.82	18.2	Clear, colorless, sulphurous odor
10:06	20	1,481	7.70	18.4	Clear, colorless, slight sulphurous odor
10:15	40	1,434	7.77	19.5	Clear, colorless, odorless
10:23	60	1,520	7.63	20.1	Cloudy, colorless, odorless
10:31	80	1,552	7.61	20.5	Cloudy, colorless, odorless
10:39	100	1,521	7.60	20.6	Clear, colorless, odorless
10:47	120	1,500	7.59	20.5	Clear, colorless, odorless
10:55	140	1,493	7.58	20.6	Clear, colorless, odorless
11:03	160	1,481	7.58	20.5	Clear, colorless, odorless
11:11	180	1,471	7.58	20.7	Clear, colorless, odorless
11:13	185	1,472	7.64	20.6	Clear, colorless, odorless
11:15	190	1,471	7.65	20.6	Clear, colorless, odorless
			_		Sampled @ 11:16

^{*}Turbidity, color, odor, sheen, debris, etc.

Date: 4/5/2023	·			
Operator: I. Pitsillide	······································			
Well number and location:	30S/11E-7Q3 (LA12)			
Site and wellhead conditions:	Site secure. Pump turned on @ 10:30 AM			
Static water depth (feet):	23.7 on April 17			
Well depth (feet):	270			
Water column (feet):	246.30			
Casing diameter (inches):	10			
Minimum purge volume (gal)	flush line			
Purge rate (gpm):				
Pumping water level (feet):				
Pump setting (feet):				
Minimum purge time (min):	flush line			
Time begin purge:	12:38 PM			

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
12:38	flush line	765.3	7.33	20.6	Clear, colorless, odorless
12:40	flush line	767.7	7.18	20.9	Clear, colorless, odorless
12:41	flush line	769.2	7.13	20.8	Clear, colorless, odorless
12:43	flush line	769.8	7.13	20.9	Clear, colorless, odorless
					Sampled @ 12:44

^{*}Turbidity, color, odor, sheen, debris, etc.

Date: 4/10/2023

Operator: I. Pitsillides and J. Raney

Well number and location: 30S/11E-18F2 (LA13)

Site and wellhead conditions: Sunny and clear. Site secure.

Static water depth (feet):	96.36
Well depth (feet):	530
Water column (feet):	433.64
Casing diameter (inches):	2.5
Minimum purge volume (gal)	335
Purge rate (gpm):	2
Pumping water level (feet):	100.3
Pump setting (feet):	120
Minimum purge time (min):	175
Time begin purge:	10:08 AM

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
10:09	0	128.5	8.23	19.1	Clear, colorless, odorless
10:11	5	143.6	7.63	20.1	Clear, colorless, odorless
10:13	10	429.4	7.39	19.8	Clear, colorless, odorless
10:20	20	463.2	7.41	20.1	Clear, colorless, slight sulphurous odor
10:29	40	473.4	7.46	20.5	Clear, colorless, slight sulphurous odor
10:48	80	543.9	7.66	22.0	Cloudy, yellowish brown, slight sulphurous odor
11:11	120	594.3	8.03	22.4	Cloudy, colorless, sulphurous odor
11:40	180	595.6	8.50	22.5	Clear, colorless, odorless
12:07	240	592.5	8.48	22.5	Clear, colorless, odorless
12:18	280	591.4	8.43	22.8	Clear, colorless, odorless
12:55	320	590.2	8.38	22.3	Clear, colorless, odorless
12:58	325	589.1	8.35	22.4	Clear, colorless, odorless
13:00	330	588.9	8.32	22.4	Clear, colorless, odorless
13:02	335	588.5	8.33	22.3	Clear, colorless, odorless
					Sampled @ 13:02

^{*}Turbidity, color, odor, sheen, debris, etc.

Date: 4/11/2023	
Operator: A. Berge	
Well number and location:	30S/11E-18L2 (LA15)
Site and wellhead conditions:	Sunny and clear. Pump turned on @ 7:00 AM
Static water depth (feet):	87.5 on April 17
Well depth (feet):	394
Water column (feet):	307
Casing diameter (inches):	12
Minimum purge volume (gal)	flush line
Purge rate (gpm):	
Pumping water level (feet):	
Pump setting (feet):	
Minimum purge time (min):	flush line
Time begin purge:	12:55 PM

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
12:56	flush line	877.0	9.48	17.3	Clear, colorless, odorless
12:59	flush line	857.0	8.52	17.0	Clear, colorless, odorless
13:02	flush line	860.0	8.22	17.4	Clear, colorless, odorless
					Sampled @ 13:04

^{*}Turbidity, color, odor, sheen, debris, etc.

Date: 4/6/2023

Operator: I. Pitsillides and J. Raney

Well number and location: 30S/11E-18K8 (LA18)

Site and wellhead conditions: Sunny, clear, and breezy. Site secure.

Static water depth (feet):	128.93
Well depth (feet):	650
Water column (feet):	521.1
Casing diameter (inches):	2
Minimum purge volume (gal)	255
Purge rate (gpm):	2
Pumping water level (feet):	136.0
Pump setting (feet):	160
Minimum purge time (min):	160
Time begin purge:	9:43 AM

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
9:44	0	497.1	8.22	20.2	Clear, colorless, odorless
9:47	5	451.0	7.93	20.6	Clear, colorless, odorless
9:54	15	453.0	7.30	20.8	Clear, colorless, odorless
9:57	20	492.5	7.28	20.8	Clear, colorless, odorless
10:23	60	576.5	7.36	22.4	Clear, colorless, odorless
10:49	100	567.5	7.64	22.6	Clear, colorless, odorless
11:15	140	569.7	7.61	22.9	Clear, colorless, odorless
11:37	180	567.6	7.55	22.7	Clear, colorless, odorless
11:51	200	566.2	7.62	22.5	Clear, colorless, odorless
12:03	220	566.1	7.67	22.5	Clear, colorless, odorless
12:12	240	566.9	7.63	22.7	Clear, colorless, odorless
12:15	245	564.2	7.66	22.6	Clear, colorless, odorless
12:18	250	564.4	7.60	22.6	Clear, colorless, odorless
12:22	255	567.2	7.54	22.6	Clear, colorless, odorless
			_		Sampled @ 12:22

^{*}Turbidity, color, odor, sheen, debris, etc.

Date: 4/6/2023

Operator: J. Raney and I. Pitsillides

Well number and location: 30S/11E-17E8 (LA22)

Site and wellhead conditions: Sunny and clear. Site secure

Static water depth (feet):	116.84
Well depth (feet):	380
Water column (feet):	263.2
Casing diameter (inches):	2
Minimum purge volume (gal)	135
Purge rate (gpm):	2
Pumping water level (feet):	112.2
Pump setting (feet):	150
Minimum purge time (min):	70
Time begin purge:	1:10 PM

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
13:11	0.1	496.0	8.23	18.8	Clear, colorless, odorless
13:14	5	492.3	8.04	19.6	Clear, colorless, odorless
13:17	10	488.7	7.49	19.8	Clear, colorless, odorless
13:22	20	470.7	7.76	20.3	Clear, colorless, odorless
13:30	40	455.2	7.70	20.3	Clear, colorless, odorless
13:40	60	458.7	7.42	20.9	Clear, colorless, odorless
13:50	80	457.2	7.43	20.8	Clear, colorless, odorless
13:59	100	458.6	7.33	20.7	Clear, colorless, odorless
14:05	110	458.5	7.35	20.6	Clear, colorless, odorless
14:09	120	458	7.36	20.7	Clear, colorless, odorless
14:11	125	457.3	7.37	20.6	Clear, colorless, odorless
14:14	130	457.6	7.38	20.7	Clear, colorless, odorless
14:17	135	456.7	7.39	20.6	Clear, colorless, odorless
					Sampled @ 14:17

^{*}Turbidity, color, odor, sheen, debris, etc.

Date: 4/18/2023	
Operator: A. Berge	
Well number and location:	30S/11E-20H1 (LA30)
Site and wellhead conditions:	Sunny and breezy. Flushed line.
Static water depth (feet):	1.99
Well depth (feet):	140
Water column (feet):	138.01
Casing diameter (inches):	6
Minimum purge volume (gal)	flush line
Purge rate (gpm):	
Pumping water level (feet):	<u></u>
Pump setting (feet):	
Minimum purge time (min):	flush line
Time begin purge:	12:00 PM

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*				
12:02	4	740.3	7.92	18.1	Slightly cloudy, colorless, odorless				
12:04	10	739.3	7.85	16.9	Clear, colorless, odorless				
12:05	15	737.6	7.68	16.9	Clear, colorless, odorless				
12:06	20	773.9	7.60	17.9	Clear, colorless, odorless				
12:07	25	751.6	7.60	18.0	Clear, colorless, odorless				
12:08	30	752.7	7.56	18.0	Clear, colorless, odorless				
12:09	35	752.7	7.57	18.0	Clear, colorless, odorless				
					Sampled @ 12:11				

^{*}Turbidity, color, odor, sheen, debris, etc.

Date: 5/4/2023		
Operator: A. Berge		
Well number and location:	30S/10E-13M2 (LA31)	
Site and wellhead conditions:	Cloudy, breezy, and warm.	
Static water depth (feet):	34.82	
Well depth (feet):	<u></u>	
Water column (feet):	<u></u>	
Casing diameter (inches):	8	
Minimum purge volume (gal)	flush line	
Purge rate (gpm):		
Pumping water level (feet):	<u> </u>	
Pump setting (feet):		
Minimum purge time (min):	flush line	
Time begin purge:	1:12 PM	

Time	Gallons	EC (µS/cm)	рН	Temp. (°C)	Comments*			
13:12	1	1,825	7.10	18.1	Slighty cloudy, colorless, odorless			
13:14	15	1,824	6.84	18.1	Clear, colorless, odorless			
13:16	45	1,825	6.78	18.5	Clear, colorless, odorless			
13:19	90	1,724	6.90	18.1	Clear, colorless, odorless			
13:23	150	1,746	7.15	18.8	Clear, colorless, odorless			
13:25	165	1,754	7.14	18.5	Clear, colorless, odorless			
13:28	210	1,802	7.10	18.6	Clear, colorless, odorless			
					Sampled @ 13:30			

^{*}Turbidity, color, odor, sheen, debris, etc.

Date: 4/5/2023					
Operator: I. Pitsillide	es .				
Well number and location:	30S/11E-18K9 (LA32)				
Site and wellhead conditions:	Sunny and breezy. Site secure.				
Static water depth (feet):	143.9 on April 17				
Well depth (feet):	<u></u>				
Water column (feet):					
Casing diameter (inches):					
Minimum purge volume (gal)	flush line				
Purge rate (gpm):					
Pumping water level (feet):					
Pump setting (feet):					
Minimum purge time (min):	flush line				
Time begin purge:	12:16 PM				

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
12:16	flush line	462.6	7.61	18.2	Clear, colorless, odorless
12:18	flush line	455.1	7.51	20.2	Clear, colorless, odorless
12:20	flush line	454.9	7.31	20.6	Clear, colorless, odorless
12:22	flush line	454.8	7.23	20.5	Clear, colorless, odorless
12:23	flush line	454.8	7.15	20.7	Clear, colorless, odorless
					Sampled @ 12:24

^{*}Turbidity, color, odor, sheen, debris, etc.

Date: 4/12/2023

Operator: I. Pitsillides and J. Raney

Well number and location: 30S/11E-13Ba (LA40)

Site and wellhead conditions: Sunny. Site secure.

6.23
487.5
481.27
2.26
255
0.56
122.23
150
448
9:08 AM

Time	Gallons	EC (mS/cm)	рН	Temp. (°C)	Comments*		
9:09	0	5.34	7.93	16.6	Clear, colorless, odorless		
9:18	5	5.46	7.65	18.1	Clear, colorless, odorless		
9:24	10	5.47	7.57	16.6	Clear, colorless, odorless		
9:41	20	5.38	7.57	18.6	Clear, colorless, odorless		
10:39	40	5.22	7.50	18.5	Clear, colorless, odorless		
11:42	60	5.24	7.49	19.5	Clear, colorless, odorless		
13:03	100	5.99	7.45	19.5	Clear, colorless, odorless		
14:13	140	6.11	7.40	20.9	Clear, colorless, odorless		
15:10	180	6.33	7.39	21.00	Clear, colorless, odorless		
15:59	220	6.23	7.32	20.9	Clear, colorless, odorless		
16:09	230	6.31	7.30	20.9	Clear, colorless, odorless		
16:18	240	6.29	7.29	21.00	Clear, colorless, odorless		
16:31	250	6.23	7.34	20.9	Clear, colorless, odorless		
16:37	255	6.27	7.34	20.9	Clear, colorless, odorless		
					Sampled @ 16:37		

^{*}Turbidity, color, odor, sheen, debris, etc.

Date: 4/11/2023

Operator: I. Pitsillides and J. Raney

Well number and location: 30S/11E-13Bb (LA41)

Site and wellhead conditions: Sunny. Site secure

Static water depth (feet):	5.25
Well depth (feet):	350
Water column (feet):	344.75
Casing diameter (inches):	2.50
Minimum purge volume (gal)	220
Purge rate (gpm):	0.87
Pumping water level (feet):	126.16
Pump setting (feet):	150
Minimum purge time (min):	252
Time begin purge:	9:53 AM

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*		
9:52	0	680.7	8.60	18.8	Clear, colorless, odorless		
9:53	5	680.4	8.25	18.7	Clear, colorless, odorless		
9:54	10	678.2	8.03	18.8	Clear, colorless, odorless		
10:09	20	683.5	7.66	19.3	Clear, colorless, odorless		
10:36	40	685.9	7.46	20.3	Clear, colorless, odorless		
11:44	80	680.7	7.51	20.8	Clear, colorless, odorless		
12:23	120	680.7	7.53	21.5	Clear, colorless, odorless		
13:13	160	681.8	7.51	21.3	Clear, colorless, odorless		
13:44	200	685.6	7.79	21.5	Clear, colorless, odorless		
13:53	210	685.3	7.50	21.4	Clear, colorless, odorless		
13:59	215	685.4	7.58	21.4	Clear, colorless, odorless		
14:04	220	685.8	7.52	21.4	Clear, colorless, odorless		
					Sampled @ 14:04		
_							

^{*}Turbidity, color, odor, sheen, debris, etc.

February 22, 2024

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

13N (LA8) Description:

Los Osos BMC Monitoring **Project**

Lab No. : CC 2381170-002

Customer No.: 8000514

Sampled On : April 13, 2023 at 12:14

Sampled By: Iason Pitsillides

Received On : April 13, 2023 at 13:17

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sar	nple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	139	2.5	mg/L		1	1	04/18/2023	07:00	ac	2340B	04/18/2023	16:13	ac
Calcium	21	1	mg/L		1		04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:13	ac
Magnesium	21	1	mg/L		1	1	04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:13	ac
Potassium	1	1	mg/L		1		04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:13	ac
Sodium	41	1	mg/L		1		04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:13	ac
Total Cations	4.6		meq/L		1	1	04/18/2023	07:00	ac	Calc.	04/18/2023	16:13	ac
Boron	ND	0.1	mg/L		1	U	04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:13	ac
Copper	ND	10	ug/L		1	U	04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:13	ac
Iron	40	30	ug/L		1		04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:13	ac
Manganese	ND	10	ug/L		1	J	04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:13	ac
Zinc	ND	20	ug/L		1	J	04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:13	ac
SAR	1.5	0.1			1	1	04/18/2023	07:00	ac	Calc.	04/18/2023	16:13	ac
Total Alkalinity (as CaCO3)	50	10	mg/L		1		04/18/2023	14:52	amm	SM 4500-H+B	04/18/2023	22:45	amm
Hydroxide as OH	ND	10	mg/L		1	U	04/18/2023	14:52	amm	SM 4500-H+B	04/18/2023	22:45	amm
Carbonate as CO3	ND	10	mg/L		1	U	04/18/2023	14:52	amm	SM 4500-H+B	04/18/2023	22:45	amm
Bicarbonate as HCO3	60	10	mg/L		1		04/18/2023	14:52	amm	SM 4500-H+B	04/18/2023	22:45	amm
Sulfate	13.2	0.5	mg/L		1		04/14/2023	15:38	ldm	EPA 300.0	04/15/2023	07:11	ldm
Chloride	80	1	mg/L		1	b	04/14/2023	15:38	ldm	EPA 300.0	04/15/2023	07:11	ldm
Nitrate as NO3	32.5	0.4	mg/L		1		04/14/2023	15:38	ldm	EPA 300.0	04/15/2023	07:11	ldm
Nitrite as N	ND	0.1	mg/L		1	U	04/14/2023	15:38	ldm	EPA 300.0	04/15/2023	07:11	ldm
Nitrate + Nitrite as N	7.3	0.1	mg/L		1		04/14/2023	15:38	ldm	EPA 300.0	04/15/2023	07:11	ldm
Fluoride	ND	0.1	mg/L		1	J	04/14/2023	15:38	ldm	EPA 300.0	04/15/2023	07:11	ldm
Total Anions	4.0		meq/L		1	bJ	04/18/2023	14:52	amm	Calc.	04/18/2023	22:45	amm
pH	8.0		units		1		04/13/2023	12:14	ip	SM 4500-H+B	04/13/2023	12:14	ip
Specific Conductance	443	1	umhos/cm		1		04/18/2023	14:52	amm	SM 4500-H+B	04/18/2023	22:45	amm
Total Dissolved Solids	250	20	mg/L		1		04/18/2023	10:00	ctl	SM 2540 C	04/19/2023	11:15	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	04/15/2023	09:36	krh	SM 5540 C	04/15/2023	09:51	krh
Aggressiveness Index	11.4	1			1		04/13/2023	12:14	ip	Calc.	04/13/2023	12:14	ip
Langelier Index (20°C)	-0.4	1			1		04/13/2023	12:14	ip	Calc.	04/13/2023	12:14	ip
Nitrate Nitrogen	7.3	0.1	mg/L		1		04/14/2023	15:38	ldm	EPA 300.0	04/15/2023	07:11	ldm

DQF Flags Definition:

- The MS/MSD did not meet QC criteria.
- Constituent results were non-detect.
- Reported value is estimated; detected at a concentration below the RL and above the laboratory MDL.
- $b \quad \text{ The Blank was positive for constituent but less than the PQL} \\$

ND=Non-Detected, RL=Reporting Level * RL adjusted for dilution, Dil.=Dilution

Section: Sample Results Page 4 of 11 Amended Page 4 of 11

Corporate Offices & Laboratory

February 22, 2024

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

Description: 13N (LA8)

Project Los Osos BMC Monitoring Lab No. : CC 2381170-002

Customer No.: 8000514

Sampled On : April 13, 2023 at 12:14

Sampled By: Iason Pitsillides

Received On : April 13, 2023 at 13:17

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation Sample		ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.95		units		04/13/2023 12:14	4500HB	04/13/2023 12:14

ND=Non-Detected, RL=Reporting Level. * RL adjusted for dilution

April 19, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane

Suite 110

Project

San Luis Obispo, CA 93401

Cabrillo (24CILA9) Description:

Los Osos BMC Monitoring

Lab No. : CC 2381084-003

Customer No.: 8000514

Sampled On : April 11, 2023 at 09:50

Sampled By : Jereme Dengate

Received On : April 11, 2023 at 14:09

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sar	nple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	117	2.5	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:01	ac
Calcium	19	1	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:01	ac
Magnesium	17	1	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:01	ac
Potassium	1	1	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:01	ac
Sodium	43	1	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:01	ac
Total Cations	4.2		meq/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:01	ac
Boron	ND	0.1	mg/L		1	U	04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:01	ac
Copper	ND	10	ug/L		1	U	04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:01	ac
Iron	ND	30	ug/L		1	U	04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:01	ac
Manganese	ND	10	ug/L		1	U	04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:01	ac
Zinc	ND	20	ug/L		1	J	04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:01	ac
SAR	1.7	0.1			1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:01	ac
Total Alkalinity (as CaCO3)	70	10	mg/L		1		04/15/2023	19:42	amm	SM 4500-H+B	04/16/2023	03:46	amm
Hydroxide as OH	ND	10	mg/L		1	U	04/15/2023	19:42	amm	SM 4500-H+B	04/16/2023	03:46	amm
Carbonate as CO3	ND	10	mg/L		1	U	04/15/2023	19:42	amm	SM 4500-H+B	04/16/2023	03:46	amm
Bicarbonate as HCO3	80	10	mg/L		1		04/15/2023	19:42	amm	SM 4500-H+B	04/16/2023	03:46	amm
Sulfate	17.3	0.5	mg/L		1		04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	05:35	ldm
Chloride	98	1	mg/L		1		04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	05:35	ldm
Nitrate as NO3	29.9	0.4	mg/L		1		04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	05:35	ldm
Nitrite as N	ND	0.1	mg/L		1	J	04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	05:35	ldm
Nitrate + Nitrite as N	6.8	0.1	mg/L		1		04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	05:35	ldm
Fluoride	ND	0.1	mg/L		1	J	04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	05:35	ldm
Total Anions	4.9		meq/L		1	J	04/15/2023	19:42	amm	SM 4500-H+B	04/16/2023	03:46	amm
pH	7.5		units		1		04/11/2023	09:50	jd	SM 4500-H+B	04/11/2023	09:50	jd
Specific Conductance	518	1	umhos/cm		1		04/15/2023	19:42	amm	SM 4500-H+B	04/16/2023	03:46	amm
Total Dissolved Solids	330	20	mg/L		1		04/13/2023	10:20	ctl	SM 2540 C	04/14/2023	11:30	ctl
MBAS (foaming agents)	Negative	0.1	mg/L		1	U	04/12/2023	17:44	krh	SM 5540 C	04/12/2023	17:58	krh
Aggressiveness Index	11.0	1			1		04/11/2023	09:50	jd	SM 4500-H+B	04/11/2023	09:50	jd
Langelier Index (20°C)	-0.8	1			1		04/11/2023	09:50	jd	SM 4500-H+B	04/11/2023	09:50	jd
Nitrate Nitrogen	6.8	0.1	mg/L		1		04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	05:35	ldm

DQF Flags Definition:

U Constituent results were non-detect.

ND=Non-Detected, RL=Reporting Level, Dil.=Dilution

Section: Sample Results Page 6 of 13 Page 6 of 13

FAX: (805)783-2912 FAX: (559)734-8435 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810

J Reported value is estimated; detected at a concentration below the RL and above the laboratory MDL.

April 19, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

Cabrillo (24CILA9) Description:

Los Osos BMC Monitoring **Project**

Lab No. : CC 2381084-003

Customer No.: 8000514

Sampled On : April 11, 2023 at 09:50

Sampled By : Jereme Dengate

Received On : April 11, 2023 at 14:09

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	San	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.5		units		04/11/2023 09:50	4500HB	04/11/2023 09:50
Temperature	67.7		°C		04/11/2023 09:50	2550B	04/11/2023 09:50
Conductivity	590		umhos/cm		04/11/2023 09:50	2510B	04/11/2023 09:50

ND=Non-Detected, RL=Reporting Level.

May 25, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

450 Rosina Description:

Project Los Osos BMC Monitoring Lab No. : CC 2381442-001

Customer No.: 8000514

Sampled On: May 8, 2023 at 11:15

Sampled By: Jerome D

Received On: May 8, 2023 at 12:03

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repa <u>r</u> a	tion	Sar	nple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	303	2.5	mg/L		1		05/15/2023	07:00	ac	2340B	05/15/2023	10:38	ac
Calcium	49	1	mg/L		1		05/15/2023	07:00	ac	EPA 200.7	05/15/2023	10:38	ac
Magnesium	44	1	mg/L		1		05/15/2023	07:00	ac	EPA 200.7	05/15/2023	10:38	ac
Potassium	2	1	mg/L		1		05/15/2023	07:00	ac	EPA 200.7	05/15/2023	10:38	ac
Sodium	51	1	mg/L		1		05/15/2023	07:00	ac	EPA 200.7	05/15/2023	10:38	ac
Total Cations	8.3		meq/L		1		05/15/2023	07:00	ac	Calc.	05/15/2023	10:38	ac
Boron	ND	0.1	mg/L		1	U	05/15/2023	07:00	ac	EPA 200.7	05/15/2023	10:38	ac
Copper	ND	10	ug/L		1	U	05/15/2023	07:00	ac	EPA 200.7	05/15/2023	10:38	ac
Iron	130	30	ug/L		1		05/15/2023	07:00	ac	EPA 200.7	05/15/2023	10:38	ac
Manganese	ND	10	ug/L		1	U	05/15/2023	07:00	ac	EPA 200.7	05/15/2023	10:38	ac
Zinc	ND	20	ug/L		1	J	05/15/2023	07:00	ac	EPA 200.7	05/15/2023	10:38	ac
SAR	1.3	0.1			1		05/15/2023	07:00	ac	Calc.	05/15/2023	10:38	ac
Total Alkalinity (as CaCO3)	70	10	mg/L		1		05/15/2023	11:30	amm	SM 4500-H+B	05/15/2023	18:27	amm
Hydroxide as OH	ND	10	mg/L		1	U	05/15/2023	11:30	amm	SM 4500-H+B	05/15/2023	18:27	amm
Carbonate as CO3	ND	10	mg/L		1	U	05/15/2023	11:30	amm	SM 4500-H+B	05/15/2023	18:27	amm
Bicarbonate as HCO3	80	10	mg/L		1		05/15/2023	11:30	amm	SM 4500-H+B	05/15/2023	18:27	amm
Sulfate	12.5	0.5	mg/L		1		05/09/2023	16:19	ldm	EPA 300.0	05/10/2023	01:24	ldm
Chloride	211	4*	mg/L		4	1	05/09/2023	16:19	ldm	EPA 300.0	05/10/2023	11:08	ldm
Nitrate as NO3	9.0	0.4	mg/L		1	1	05/09/2023	16:19	ldm	EPA 300.0	05/10/2023	01:24	ldm
Nitrite as N	ND	0.1	mg/L		1	U	05/09/2023	16:19	ldm	EPA 300.0	05/10/2023	01:24	ldm
Nitrate + Nitrite as N	2.0	0.1	mg/L		1	1	05/09/2023	16:19	ldm	EPA 300.0	05/10/2023	01:24	ldm
Fluoride	ND	0.1	mg/L		1	J	05/09/2023	16:19	ldm	EPA 300.0	05/10/2023	01:24	ldm
Total Anions	7.7		meq/L		1	lJ	05/15/2023	11:30	amm	Calc.	05/15/2023	18:27	amm
pH	7.13		units		1		05/08/2023	11:15	jd	SM 4500-H+B	05/08/2023	11:15	jd
Specific Conductance	892	1	umhos/cm		1		05/15/2023	11:30	amm	SM 4500-H+B	05/15/2023	18:27	amm
Total Dissolved Solids	690	20	mg/L		1		05/10/2023	10:16	ctl	SM 2540 C	05/11/2023	11:45	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	05/09/2023	17:31	krh	SM 5540 C	05/09/2023	17:38	krh
Aggressiveness Index	11.1	1			1		05/08/2023	11:15	jd	Calc.	05/08/2023	11:15	jd
Langelier Index (20°C)	-0.8	1			1		05/08/2023	11:15	jd	Calc.	05/08/2023	11:15	jd
Nitrate Nitrogen	2.0	0.1	mg/L		1	1	05/09/2023	16:19	ldm	EPA 300.0	05/10/2023	01:24	ldm

DQF Flags Definition:

Constituent results were non-detect.

Reported value is estimated; detected at a concentration below the RL and above the laboratory MDL.

The MS/MSD did not meet QC criteria.

ND=Non-Detected, RL=Reporting Level * RL adusted for dilution, Dil.=Dilution

Section: Sample Results Page 2 of 6 Page 2 of 6 May 25, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

450 Rosina Description:

Project Los Osos BMC Monitoring Lab No. : CC 2381442-001

Customer No.: 8000514

Sampled On: May 8, 2023 at 11:15

Sampled By: Jerome D

Received On: May 8, 2023 at 12:03

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	San	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.13		units		05/08/2023 11:15	4500HB	05/08/2023 11:15
Conductivity	900		umhos/cm		05/08/2023 11:15	2510B	05/08/2023 11:15
Temperature	19.2		°C		05/08/2023 11:15	2550B	05/08/2023 11:15

ND=Non-Detected, RL=Reporting Level. * RL adusted for dilution

FAX: (805)783-2912 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810

February 22, 2024

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

Description: 12J1 (LA11)

Los Osos BMC Monitoring **Project**

Lab No. : CC 2381170-001

Customer No.: 8000514

Sampled On : April 13, 2023 at 11:16

Sampled By: Iason Pitsillides

Received On : April 13, 2023 at 13:17

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sar	nple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	653	2.5	mg/L		1	1	04/18/2023	07:00	ac	2340B	04/18/2023	16:07	ac
Calcium	92	1	mg/L		1		04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:07	ac
Magnesium	103	1	mg/L		1	1	04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:07	ac
Potassium	5	1	mg/L		1		04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:07	ac
Sodium	89	1	mg/L		1		04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:07	ac
Total Cations	17.1		meq/L		1	l	04/18/2023	07:00	ac	Calc.	04/18/2023	16:07	ac
Boron	0.2	0.1	mg/L		1		04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:07	ac
Copper	ND	10	ug/L		1	J	04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:07	ac
Iron	550	30	ug/L		1		04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:07	ac
Manganese	60	10	ug/L		1		04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:07	ac
Zinc	50	20	ug/L		1		04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:07	ac
SAR	1.5	0.1			1	l	04/18/2023	07:00	ac	Calc.	04/18/2023	16:07	ac
Total Alkalinity (as CaCO3)	280	10	mg/L		1		04/24/2023	15:10	amm	SM 4500-H+B	04/24/2023	21:45	amm
Hydroxide as OH	ND	10	mg/L		1	U	04/24/2023	15:10	amm	SM 4500-H+B	04/24/2023	21:45	amm
Carbonate as CO3	ND	10	mg/L		1	U	04/24/2023	15:10	amm	SM 4500-H+B	04/24/2023	21:45	amm
Bicarbonate as HCO3	350	10	mg/L		1		04/24/2023	15:10	amm	SM 4500-H+B	04/24/2023	21:45	amm
Sulfate	188	0.5	mg/L		1		04/14/2023	17:27	ldm	EPA 300.0	04/15/2023	11:23	ldm
Chloride	346	7*	mg/L		7	bh	04/14/2023	17:27	ldm	EPA 300.0	04/15/2023	18:41	ldm
Nitrate as NO3	ND	0.4	mg/L		1	U	04/14/2023	17:27	ldm	EPA 300.0	04/15/2023	11:23	ldm
Nitrite as N	ND	0.1	mg/L		1	U	04/14/2023	17:27	ldm	EPA 300.0	04/15/2023	11:23	ldm
Nitrate + Nitrite as N	ND	0.1	mg/L		1	U	04/14/2023	17:27	ldm	EPA 300.0	04/15/2023	11:23	ldm
Fluoride	0.1	0.1	mg/L		1		04/14/2023	17:27	ldm	EPA 300.0	04/15/2023	11:23	ldm
Total Anions	19.4		meq/L		1	bh	04/24/2023	15:10	amm	Calc.	04/24/2023	21:45	amm
pH	7.2		units		1		04/13/2023	11:16	ip	SM 4500-H+B	04/13/2023	11:16	ip
Specific Conductance	1840	1	umhos/cm		1		04/24/2023	15:10	amm	SM 4500-H+B	04/24/2023	21:45	amm
Total Dissolved Solids	1040	20	mg/L		1		04/18/2023	10:00	ctl	SM 2540 C	04/19/2023	11:15	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	04/15/2023	09:36	krh	SM 5540 C	04/15/2023	09:51	krh
Aggressiveness Index	12.0	1			1		04/13/2023	11:16	ip	Calc.	04/13/2023	11:16	ip
Langelier Index (20°C)	0.1	1			1		04/13/2023	11:16	ip	Calc.	04/13/2023	11:16	ip
Nitrate Nitrogen	ND	0.1	mg/L		1	U	04/14/2023	17:27	ldm	EPA 300.0	04/15/2023	11:23	ldm

DQF Flags Definition:

- l The MS/MSD did not meet QC criteria.
- Reported value is estimated; detected at a concentration below the RL and above the laboratory MDL.
- U Constituent results were non-detect.
- $b \quad \text{ The Blank was positive for constituent but less than the PQL} \\$
- The MS/MSD did not meet QC criteria.

ND=Non-Detected, RL=Reporting Level * RL adjusted for dilution, Dil.=Dilution

Section: Sample Results Page 2 of 11 Amended Page 2 of 11

Corporate Offices & Laboratory

February 22, 2024

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

12J1 (LA11) Description:

Los Osos BMC Monitoring **Project**

Lab No. : CC 2381170-001

Customer No.: 8000514

Sampled On : April 13, 2023 at 11:16

Sampled By: Iason Pitsillides

Received On : April 13, 2023 at 13:17

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.65		units		04/13/2023 11:16	4500HB	04/13/2023 11:16

ND=Non-Detected, RL=Reporting Level. * RL adjusted for dilution

June 8, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

(LA12) 703 Description:

Los Osos BMC Monitoring **Project**

Lab No. : CC 2381030-001

Customer No.: 8000514

Sampled On : April 5, 2023 at 12:44

Sampled By: Iason Pitsillides

Received On : April 5, 2023 at 14:27

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repa <u>r</u> a	tion	Sar	nple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	317	2.5	mg/L		1		04/07/2023	12:00	ac	2340B	04/07/2023	15:13	ac
Calcium	48	1	mg/L		1		04/07/2023	12:00	ac	EPA 200.7	04/07/2023	15:13	ac
Magnesium	48	1	mg/L		1		04/07/2023	12:00	ac	EPA 200.7	04/07/2023	15:13	ac
Potassium	3	1	mg/L		1		04/07/2023	12:00	ac	EPA 200.7	04/07/2023	15:13	ac
Sodium	72	1	mg/L		1		04/07/2023	12:00	ac	EPA 200.7	04/07/2023	15:13	ac
Total Cations	9.6		meq/L		1		04/07/2023	12:00	ac	Calc.	04/07/2023	15:13	ac
Boron	0.2	0.1	mg/L		1		04/07/2023	12:00	ac	EPA 200.7	04/07/2023	15:13	ac
Copper	ND	10	ug/L		1	J	04/07/2023	12:00	ac	EPA 200.7	04/07/2023	15:13	ac
Iron	70	30	ug/L		1		04/07/2023	12:00	ac	EPA 200.7	04/07/2023	15:13	ac
Manganese	60	10	ug/L		1		04/07/2023	12:00	ac	EPA 200.7	04/07/2023	15:13	ac
Zinc	ND	20	ug/L		1	J	04/07/2023	12:00	ac	EPA 200.7	04/07/2023	15:13	ac
SAR	1.8	0.1			1		04/07/2023	12:00	ac	Calc.	04/07/2023	15:13	ac
Total Alkalinity (as CaCO3)	250	10	mg/L		1		04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	17:51	amm
Hydroxide as OH	ND	10	mg/L		1	U	04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	17:51	amm
Carbonate as CO3	ND	10	mg/L		1	U	04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	17:51	amm
Bicarbonate as HCO3	310	10	mg/L		1		04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	17:51	amm
Sulfate	51.9	0.5	mg/L		1	1	04/06/2023	16:30	ldm	EPA 300.0	04/06/2023	23:50	krh
Chloride	98	1	mg/L		1	l	04/06/2023	16:30	ldm	EPA 300.0	04/06/2023	23:50	krh
Nitrate as NO3	ND	0.4	mg/L		1	U	04/06/2023	16:30	ldm	EPA 300.0	04/06/2023	23:50	krh
Nitrite as N	ND	0.1	mg/L		1	U	04/06/2023	16:30	ldm	EPA 300.0	04/06/2023	23:50	krh
Nitrate + Nitrite as N	ND	0.1	mg/L		1	U	04/06/2023	16:30	ldm	EPA 300.0	04/06/2023	23:50	krh
Fluoride	ND	0.1	mg/L		1	J	04/06/2023	16:30	ldm	EPA 300.0	04/06/2023	23:50	krh
Total Anions	8.9		meq/L		1	IJ	04/11/2023	14:02	amm	Calc.	04/11/2023	17:51	amm
pH	7.1		units		1		04/05/2023	12:44	ip	SM 4500-H+B	04/05/2023	12:44	ip
Specific Conductance	842	1	umhos/cm		1		04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	17:51	amm
Total Dissolved Solids	490	20	mg/L		1		04/07/2023	13:50	ctl	SM 2540 C	04/10/2023	11:00	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	04/06/2023	18:03	krh	SM 5540 C	04/06/2023	18:17	krh
Aggressiveness Index	11.6	1			1		04/05/2023	12:44	ip	Calc.	04/05/2023	12:44	ip
Langelier Index (20°C)	-0.3	1			1		04/05/2023	12:44	ip	Calc.	04/05/2023	12:44	ip
Nitrate Nitrogen	ND	0.1	mg/L		1	U	04/06/2023	16:30	ldm	EPA 300.0	04/06/2023	23:50	krh

DQF Flags Definition:

- J Reported value is estimated; detected at a concentration below the RL and above the laboratory MDL.
- Constituent results were non-detect.
- l The MS/MSD did not meet QC criteria.

ND=Non-Detected, RL=Reporting Level, Dil.=Dilution

Section: Sample Results Page 2 of 9 Amended Page 2 of 9 June 8, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane

Suite 110

San Luis Obispo, CA 93401

(LA12) 703 Description:

Los Osos BMC Monitoring **Project**

Lab No. : CC 2381030-001

Customer No.: 8000514

Sampled On : April 5, 2023 at 12:44

Sampled By: Iason Pitsillides

Received On : April 5, 2023 at 14:27

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.13		units		04/05/2023 12:44	4500HB	04/05/2023 12:44

ND=Non-Detected, RL=Reporting Level.

Page 3 of 9 Section: Sample Results Amended Page 3 of 9

Corporate Offices & Laboratory

April 20, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

18F2 (LA13) Description:

Los Osos BMC Monitoring **Project**

Lab No. : CC 2381069-001

Customer No.: 8000514

Sampled On : April 10, 2023 at 13:02

Sampled By: Iason Pitsillides

Received On : April 10, 2023 at 14:48

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sar	nple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	132	2.5	mg/L		1		04/11/2023	15:00	ac	EPA 200.7	04/11/2023	16:57	ac
Calcium	15	1	mg/L		1		04/11/2023	15:00	ac	EPA 200.7	04/11/2023	16:57	ac
Magnesium	23	1	mg/L		1		04/11/2023	15:00	ac	EPA 200.7	04/11/2023	16:57	ac
Potassium	2	1	mg/L		1		04/11/2023	15:00	ac	EPA 200.7	04/11/2023	16:57	ac
Sodium	76	1	mg/L		1		04/11/2023	15:00	ac	EPA 200.7	04/11/2023	16:57	ac
Total Cations	6.0		meq/L		1		04/11/2023	15:00	ac	EPA 200.7	04/11/2023	16:57	ac
Boron	ND	0.1	mg/L		1	J	04/11/2023	15:00	ac	EPA 200.7	04/11/2023	16:57	ac
Copper	ND	10	ug/L		1	U	04/11/2023	15:00	ac	EPA 200.7	04/11/2023	16:57	ac
Iron	70	30	ug/L		1		04/11/2023	15:00	ac	EPA 200.7	04/11/2023	16:57	ac
Manganese	50	10	ug/L		1		04/11/2023	15:00	ac	EPA 200.7	04/11/2023	16:57	ac
Zinc	ND	20	ug/L		1	U	04/11/2023	15:00	ac	EPA 200.7	04/11/2023	16:57	ac
SAR	2.9	0.1			1		04/11/2023	15:00	ac	EPA 200.7	04/11/2023	16:57	ac
Total Alkalinity (as CaCO3)	160	10	mg/L		1		04/16/2023	16:18	amm	SM 4500-H+B	04/16/2023	18:03	amm
Hydroxide as OH	ND	10	mg/L		1	U	04/16/2023	16:18	amm	SM 4500-H+B	04/16/2023	18:03	amm
Carbonate as CO3	ND	10	mg/L		1	U	04/16/2023	16:18	amm	SM 4500-H+B	04/16/2023	18:03	amm
Bicarbonate as HCO3	190	10	mg/L		1		04/16/2023	16:18	amm	SM 4500-H+B	04/16/2023	18:03	amm
Sulfate	62.1	0.5	mg/L		1		04/11/2023	16:42	ldm	EPA 300.0	04/12/2023	04:22	ldm
Chloride	77	1	mg/L		1		04/11/2023	16:42	ldm	EPA 300.0	04/12/2023	04:22	ldm
Nitrate as NO3	ND	0.4	mg/L		1	U	04/11/2023	16:42	ldm	EPA 300.0	04/12/2023	04:22	ldm
Nitrite as N	ND	0.1	mg/L		1	U	04/11/2023	16:42	ldm	EPA 300.0	04/12/2023	04:22	ldm
Nitrate + Nitrite as N	ND	0.1	mg/L		1	U	04/11/2023	16:42	ldm	EPA 300.0	04/12/2023	04:22	ldm
Fluoride	ND	0.1	mg/L		1	J	04/11/2023	16:42	ldm	EPA 300.0	04/12/2023	04:22	ldm
Total Anions	6.6		meq/L		1	J	04/16/2023	16:18	amm	SM 4500-H+B	04/16/2023	18:03	amm
pH	8.33		units		1		04/10/2023	13:02	ip	SM 4500-H+B	04/10/2023	13:02	ip
Specific Conductance	668	1	umhos/cm		1		04/16/2023	16:18	amm	SM 4500-H+B	04/16/2023	18:03	amm
Total Dissolved Solids	310	20	mg/L		1		04/12/2023	09:48	ctl	SM 2540 C	04/13/2023	12:00	ctl
MBAS (foaming agents)	Negative	0.1	mg/L		1	U	04/12/2023	07:18	krh	SM 5540 C	04/12/2023	07:34	krh
Aggressiveness Index	12.1	1			1		04/10/2023	13:02	ip	SM 4500-H+B	04/10/2023	13:02	ip
Langelier Index (20°C)	0.3	1			1		04/10/2023	13:02	ip	SM 4500-H+B	04/10/2023	13:02	ip
Nitrate Nitrogen	ND	0.1	mg/L		1	U	04/11/2023	16:42	ldm	EPA 300.0	04/12/2023	04:22	ldm

DQF Flags Definition:

ND=Non-Detected, RL=Reporting Level, Dil.=Dilution

Section: Sample Results Page 2 of 6 Page 2 of 6

Reported value is estimated; detected at a concentration below the RL and above the laboratory MDL.

Constituent results were non-detect.

April 20, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane

Suite 110

San Luis Obispo, CA 93401

Description: 18F2 (LA13)

Los Osos BMC Monitoring **Project**

Lab No. : CC 2381069-001

Customer No.: 8000514

Sampled On : April 10, 2023 at 13:02

Sampled By: Iason Pitsillides

Received On : April 10, 2023 at 14:48

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	8.33		units		04/10/2023 13:02	4500HB	04/10/2023 13:02

April 19, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane

Suite 110

San Luis Obispo, CA 93401

18L2 LA15 Description:

Project Los Osos BMC Monitoring Lab No. : CC 2381085-001

Customer No.: 8000514

Sampled On : April 11, 2023 at 13:04

Sampled By : Andrea Berge

Received On : April 11, 2023 at 14:09

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sar	mple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	282	2.5	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:33	ac
Calcium	47	1	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:33	ac
Magnesium	40	1	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:33	ac
Potassium	2	1	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:33	ac
Sodium	37	1	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:33	ac
Total Cations	7.3		meq/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:33	ac
Boron	ND	0.1	mg/L		1	U	04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:33	ac
Copper	ND	10	ug/L		1	J	04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:33	ac
Iron	40	30	ug/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:33	ac
Manganese	ND	10	ug/L		1	U	04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:33	ac
Zinc	ND	20	ug/L		1	J	04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:33	ac
SAR	1.0	0.1			1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:33	ac
Total Alkalinity (as CaCO3)	200	10	mg/L		1		04/16/2023	22:43	amm	SM 4500-H+B	04/17/2023	05:46	amm
Hydroxide as OH	ND	10	mg/L		1	U	04/16/2023	22:43	amm	SM 4500-H+B	04/17/2023	05:46	amm
Carbonate as CO3	ND	10	mg/L		1	U	04/16/2023	22:43	amm	SM 4500-H+B	04/17/2023	05:46	amm
Bicarbonate as HCO3	250	10	mg/L		1		04/16/2023	22:43	amm	SM 4500-H+B	04/17/2023	05:46	amm
Sulfate	31.4	0.5	mg/L		1		04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	06:59	ldm
Chloride	142	3*	mg/L		3		04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	13:54	ldm
Nitrate as NO3	3.4	0.4	mg/L		1		04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	06:59	ldm
Nitrite as N	ND	0.1	mg/L		1	U	04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	06:59	ldm
Nitrate + Nitrite as N	8.0	0.1	mg/L		1		04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	06:59	ldm
Fluoride	ND	0.1	mg/L		1	J	04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	06:59	ldm
Total Anions	8.8		meq/L		1	J	04/16/2023	22:43	amm	SM 4500-H+B	04/17/2023	05:46	amm
pH	8.22		units		1		04/11/2023	13:04	ab	SM 4500-H+B	04/11/2023	13:04	ab
Specific Conductance	877	1	umhos/cm		1		04/16/2023	22:43	amm	SM 4500-H+B	04/17/2023	05:46	amm
Total Dissolved Solids	470	20	mg/L		1		04/13/2023	10:20	ctl	SM 2540 C	04/14/2023	11:30	ctl
MBAS (foaming agents)	Negative	0.1	mg/L		1	U	04/12/2023	17:44	krh	SM 5540 C	04/12/2023	17:58	krh
Aggressiveness Index	12.6	1			1		04/11/2023	13:04	ab	SM 4500-H+B	04/11/2023	13:04	ab
Langelier Index (20°C)	0.7	1			1		04/11/2023	13:04	ab	SM 4500-H+B	04/11/2023	13:04	ab
Nitrate Nitrogen	8.0	0.1	mg/L		1		04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	06:59	ldm

DQF Flags Definition:

U Constituent results were non-detect.

ND=Non-Detected, RL=Reporting Level * RL adusted for dilution, Dil.=Dilution

Section: Sample Results Page 2 of 6 Page 2 of 6

J Reported value is estimated; detected at a concentration below the RL and above the laboratory MDL.

April 19, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

18L2 LA15 Description:

Project Los Osos BMC Monitoring Lab No. : CC 2381085-001

Customer No.: 8000514

Sampled On : April 11, 2023 at 13:04

Sampled By : Andrea Berge

Received On : April 11, 2023 at 14:09

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	San	ple Analysis
Field Test					Date	Method	Date
pH (Field)	8.22		units		04/11/2023 13:04	4500HB	04/11/2023 13:04
Temperature	17.4		°C		04/11/2023 13:04	2550B	04/11/2023 13:04
Conductivity	860		umhos/cm		04/11/2023 13:04	2510B	04/11/2023 13:04

ND=Non-Detected, RL=Reporting Level. * RL adusted for dilution

April 13, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

18K8 (LA18) Description:

Los Osos BMC Monitoring **Project**

Lab No. : CC 2381050-001

Customer No.: 8000514

Sampled On : April 6, 2023 at 12:22

Sampled By: Iason Pitsillides

Received On : April 6, 2023 at 15:04

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sar	nple Analy	/sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	252	2.5	mg/L		1		04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:50	ac
Calcium	50	1	mg/L		1		04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:50	ac
Magnesium	31	1	mg/L		1		04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:50	ac
Potassium	2	1	mg/L		1		04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:50	ac
Sodium	26	1	mg/L		1		04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:50	ac
Total Cations	6.2		meq/L		1		04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:50	ac
Boron	ND	0.1	mg/L		1	J	04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:50	ac
Copper	ND	10	ug/L		1	J	04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:50	ac
Iron	ND	30	ug/L		1	J	04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:50	ac
Manganese	80	10	ug/L		1		04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:50	ac
Zinc	ND	20	ug/L		1	J	04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:50	ac
SAR	0.7	0.1			1		04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:50	ac
Total Alkalinity (as CaCO3)	250	10	mg/L		1		04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	23:03	amm
Hydroxide as OH	ND	10	mg/L		1	U	04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	23:03	amm
Carbonate as CO3	ND	10	mg/L		1	U	04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	23:03	amm
Bicarbonate as HCO3	310	10	mg/L		1		04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	23:03	amm
Sulfate	38.7	0.5	mg/L		1	1	04/07/2023	12:16	ldm	EPA 300.0	04/07/2023	19:33	ldm
Chloride	32	1	mg/L		1		04/07/2023	12:16	ldm	EPA 300.0	04/07/2023	19:33	ldm
Nitrate as NO3	ND	0.4	mg/L		1	U	04/07/2023	12:16	ldm	EPA 300.0	04/07/2023	19:33	ldm
Nitrite as N	ND	0.1	mg/L		1	J	04/07/2023	12:16	ldm	EPA 300.0	04/07/2023	19:33	ldm
Nitrate + Nitrite as N	ND	0.1	mg/L		1	U	04/07/2023	12:16	ldm	EPA 300.0	04/07/2023	19:33	ldm
Fluoride	0.3	0.1	mg/L		1		04/07/2023	12:16	ldm	EPA 300.0	04/07/2023	19:33	ldm
Total Anions	6.8		meq/L		1	lJ	04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	23:03	amm
pH	7.88		units		1	T	04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	23:03	amm
Specific Conductance	623	1	umhos/cm		1		04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	23:03	amm
Total Dissolved Solids	410	20	mg/L		1		04/10/2023	11:00	ctl	SM 2540 C	04/11/2023	11:00	ctl
MBAS (foaming agents)	Negative	0.1	mg/L		1	U	04/08/2023	09:00	krh	SM 5540 C	04/08/2023	09:24	krh
Aggressiveness Index	12.4	1			1		04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	23:03	amm
Langelier Index (20°C)	0.5	1			1		04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	23:03	amm
Nitrate Nitrogen	ND	0.1	mg/L		1	U	04/07/2023	12:16	ldm	EPA 300.0	04/07/2023	19:33	ldm

DQF Flags Definition:

- J Reported value is estimated; detected at a concentration below the RL and above the laboratory MDL.
- Constituent results were non-detect.
- 1 The MS/MSD did not meet OC criteria.
- $T \quad \hbox{ Exceeded method/regulatory-specific holding time.} \\$

ND=Non-Detected, RL=Reporting Level, Dil.=Dilution

Section: Sample Results Page 3 of 10 Page 3 of 10 April 13, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

Description: 18K8 (LA18)

Los Osos BMC Monitoring **Project**

Lab No. : CC 2381050-001

Customer No.: 8000514

Sampled On : April 6, 2023 at 12:22

Sampled By: Iason Pitsillides

Received On : April 6, 2023 at 15:04

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.54		units		04/06/2023 12:22	4500HB	04/06/2023 12:22

April 19, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane

Suite 110

San Luis Obispo, CA 93401

South Bay (17NIO 20 LA) Description: Los Osos BMC Monitoring **Project**

Lab No. : CC 2381084-001

Customer No.: 8000514

Sampled On : April 11, 2023 at 08:40

Sampled By : Jereme Dengate

Received On : April 11, 2023 at 14:09

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF			sis				
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	173	2.5	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:48	ac
Calcium	28	1	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:48	ac
Magnesium	25	1	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:48	ac
Potassium	2	1	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:48	ac
Sodium	33	1	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:48	ac
Total Cations	4.9		meq/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:48	ac
Boron	0.1	0.1	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:48	ac
Copper	ND	10	ug/L		1	U	04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:48	ac
Iron	70	30	ug/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:48	ac
Manganese	20	10	ug/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:48	ac
Zinc	ND	20	ug/L		1	J	04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:48	ac
SAR	1.1	0.1			1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:48	ac
Total Alkalinity (as CaCO3)	170	10	mg/L		1		04/16/2023	16:18	amm	SM 4500-H+B	04/16/2023	21:31	amm
Hydroxide as OH	ND	10	mg/L		1	U	04/16/2023	16:18	amm	SM 4500-H+B	04/16/2023	21:31	amm
Carbonate as CO3	ND	10	mg/L		1	U	04/16/2023	16:18	amm	SM 4500-H+B	04/16/2023	21:31	amm
Bicarbonate as HCO3	200	10	mg/L		1		04/16/2023	16:18	amm	SM 4500-H+B	04/16/2023	21:31	amm
Sulfate	21.8	0.5	mg/L		1		04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	03:30	ldm
Chloride	43	1	mg/L		1		04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	03:30	ldm
Nitrate as NO3	15.2	0.4	mg/L		1		04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	03:30	ldm
Nitrite as N	ND	0.1	mg/L		1	J	04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	03:30	ldm
Nitrate + Nitrite as N	3.4	0.1	mg/L		1		04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	03:30	ldm
Fluoride	0.1	0.1	mg/L		1		04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	03:30	ldm
Total Anions	5.2		meq/L		1	J	04/16/2023	16:18	amm	SM 4500-H+B	04/16/2023	21:31	amm
pH	7.8		units		1		04/11/2023	08:40	jd	SM 4500-H+B	04/11/2023	08:40	jd
Specific Conductance	515	1	umhos/cm		1		04/16/2023	16:18	amm	SM 4500-H+B	04/16/2023	21:31	amm
Total Dissolved Solids	290	20	mg/L		1		04/13/2023	10:20	ctl	SM 2540 C	04/14/2023	11:30	ctl
MBAS (foaming agents)	Negative	0.1	mg/L		1	U	04/12/2023	17:44	krh	SM 5540 C	04/12/2023	17:58	krh
Aggressiveness Index	11.9	1			1		04/11/2023	08:40	jd	SM 4500-H+B	04/11/2023	08:40	jd
Langelier Index (20°C)	0.04	1			1		04/11/2023	08:40	jd	SM 4500-H+B	04/11/2023	08:40	jd
Nitrate Nitrogen	3.4	0.1	mg/L		1		04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	03:30	ldm

DQF Flags Definition:

Constituent results were non-detect.

ND=Non-Detected, RL=Reporting Level, Dil.=Dilution

Section: Sample Results Page 2 of 13 Page 2 of 13

J Reported value is estimated; detected at a concentration below the RL and above the laboratory MDL.

April 19, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

Description: South Bay (17NIO 20 LA) Los Osos BMC Monitoring **Project**

Lab No. : CC 2381084-001

Customer No.: 8000514

Sampled On : April 11, 2023 at 08:40

Sampled By : Jereme Dengate

Received On : April 11, 2023 at 14:09

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	San	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.8		units		04/11/2023 08:40	4500HB	04/11/2023 08:40
Temperature	67.8		°C		04/11/2023 08:40	2550B	04/11/2023 08:40
Conductivity	724		umhos/cm		04/11/2023 08:40	2510B	04/11/2023 08:40

April 13, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane

Suite 110

Project

San Luis Obispo, CA 93401

Description: 17E8 (LA22)

Los Osos BMC Monitoring

Lab No. : CC 2381050-002

Customer No.: 8000514

Sampled On : April 6, 2023 at 14:17

Sampled By: Iason Pitsillides

Received On : April 6, 2023 at 15:04

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sar	nple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	176	2.5	mg/L		1		04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:56	ac
Calcium	26	1	mg/L		1		04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:56	ac
Magnesium	27	1	mg/L		1		04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:56	ac
Potassium	1	1	mg/L		1		04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:56	ac
Sodium	26	1	mg/L		1		04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:56	ac
Total Cations	4.7		meq/L		1		04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:56	ac
Boron	ND	0.1	mg/L		1	J	04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:56	ac
Copper	ND	10	ug/L		1	J	04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:56	ac
Iron	ND	30	ug/L		1	U	04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:56	ac
Manganese	ND	10	ug/L		1	J	04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:56	ac
Zinc	ND	20	ug/L		1	J	04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:56	ac
SAR	0.9	0.1			1		04/07/2023	16:00	ac	EPA 200.7	04/07/2023	19:56	ac
Total Alkalinity (as CaCO3)	160	10	mg/L		1		04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	20:15	amm
Hydroxide as OH	ND	10	mg/L		1	U	04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	20:15	amm
Carbonate as CO3	ND	10	mg/L		1	U	04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	20:15	amm
Bicarbonate as HCO3	200	10	mg/L		1		04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	20:15	amm
Sulfate	14.9	0.5	mg/L		1		04/07/2023	15:36	ldm	EPA 300.0	04/08/2023	01:29	ldm
Chloride	41	1	mg/L		1		04/07/2023	15:36	ldm	EPA 300.0	04/08/2023	01:29	ldm
Nitrate as NO3	24.4	0.4	mg/L		1		04/07/2023	15:36	ldm	EPA 300.0	04/08/2023	01:29	ldm
Nitrite as N	ND	0.1	mg/L		1	Jb	04/07/2023	15:36	ldm	EPA 300.0	04/08/2023	01:29	ldm
Nitrate + Nitrite as N	5.5	0.1	mg/L		1		04/07/2023	15:36	ldm	EPA 300.0	04/08/2023	01:29	ldm
Fluoride	ND	0.1	mg/L		1	J	04/07/2023	15:36	ldm	EPA 300.0	04/08/2023	01:29	ldm
Total Anions	5.1		meq/L		1	Jb	04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	20:15	amm
pH	7.67		units		1	T	04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	20:15	amm
Specific Conductance	496	1	umhos/cm		1		04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	20:15	amm
Total Dissolved Solids	300	20	mg/L		1		04/10/2023	11:00	ctl	SM 2540 C	04/11/2023	11:00	ctl
MBAS (foaming agents)	Negative	0.1	mg/L		1	U	04/08/2023	09:00	krh	SM 5540 C	04/08/2023	09:24	krh
Aggressiveness Index	11.7	1			1		04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	20:15	amm
Langelier Index (20°C)	-0.2	1			1		04/11/2023	14:02	amm	SM 4500-H+B	04/11/2023	20:15	amm
Nitrate Nitrogen	5.5	0.1	mg/L		1		04/07/2023	15:36	ldm	EPA 300.0	04/08/2023	01:29	ldm

DQF Flags Definition:

- J Reported value is estimated; detected at a concentration below the RL and above the laboratory MDL.
- Constituent results were non-detect.
- The Blank was positive for constituent but less than the PQL
- Exceeded method/regulatory-specific holding time.

ND=Non-Detected, RL=Reporting Level, Dil.=Dilution

Section: Sample Results Page 5 of 10 Page 5 of 10 April 13, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane

Suite 110

San Luis Obispo, CA 93401

Description: 17E8 (LA22)

Los Osos BMC Monitoring **Project**

Lab No. : CC 2381050-002

Customer No.: 8000514

Sampled On : April 6, 2023 at 14:17

Sampled By: Iason Pitsillides

Received On : April 6, 2023 at 15:04

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	San	iple Analysis
Field Test					Date	Method	Date
pH (Field)	7.39		units		04/06/2023 14:17	4500HB	04/06/2023 14:17

April 27, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

Project

San Luis Obispo, CA 93401

20H1 (LA30) Description:

Los Osos BMC Monitoring

Lab No. : CC 2381199-001

Customer No.: 8000514

Sampled On : April 18, 2023 at 12:11

Sampled By : Andrea Berge

Received On : April 18, 2023 at 12:42

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sar	nple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	371	2.5	mg/L		1	1	04/20/2023	16:00	ac	EPA 200.7	04/20/2023	18:30	ac
Calcium	68	1	mg/L		1		04/20/2023	16:00	ac	EPA 200.7	04/20/2023	18:30	ac
Magnesium	49	1	mg/L		1	1	04/20/2023	16:00	ac	EPA 200.7	04/20/2023	18:30	ac
Potassium	2	1	mg/L		1		04/20/2023	16:00	ac	EPA 200.7	04/20/2023	18:30	ac
Sodium	38	1	mg/L		1		04/20/2023	16:00	ac	EPA 200.7	04/20/2023	18:30	ac
Total Cations	9.1		meq/L		1	1	04/20/2023	16:00	ac	EPA 200.7	04/20/2023	18:30	ac
Boron	0.1	0.1	mg/L		1		04/20/2023	16:00	ac	EPA 200.7	04/20/2023	18:30	ac
Copper	ND	10	ug/L		1	U	04/20/2023	16:00	ac	EPA 200.7	04/20/2023	18:30	ac
Iron	620	30	ug/L		1		04/20/2023	16:00	ac	EPA 200.7	04/20/2023	18:30	ac
Manganese	170	10	ug/L		1		04/20/2023	16:00	ac	EPA 200.7	04/20/2023	18:30	ac
Zinc	ND	20	ug/L		1	J	04/20/2023	16:00	ac	EPA 200.7	04/20/2023	18:30	ac
SAR	0.9	0.1			1	1	04/20/2023	16:00	ac	EPA 200.7	04/20/2023	18:30	ac
Total Alkalinity (as CaCO3)	340	10	mg/L		1		04/24/2023	15:10	amm	SM 4500-H+B	04/24/2023	22:45	amm
Hydroxide as OH	ND	10	mg/L		1	U	04/24/2023	15:10	amm	SM 4500-H+B	04/24/2023	22:45	amm
Carbonate as CO3	ND	10	mg/L		1	U	04/24/2023	15:10	amm	SM 4500-H+B	04/24/2023	22:45	amm
Bicarbonate as HCO3	420	10	mg/L		1		04/24/2023	15:10	amm	SM 4500-H+B	04/24/2023	22:45	amm
Sulfate	91.2	0.5	mg/L		1		04/19/2023	12:25	ldm	EPA 300.0	04/19/2023	19:43	ldm
Chloride	58	1	mg/L		1		04/19/2023	12:25	ldm	EPA 300.0	04/19/2023	19:43	ldm
Nitrate as NO3	ND	0.4	mg/L		1	Ul	04/19/2023	12:25	ldm	EPA 300.0	04/19/2023	19:43	ldm
Nitrite as N	ND	0.1	mg/L		1	Jb	04/19/2023	12:25	ldm	EPA 300.0	04/19/2023	19:43	ldm
Nitrate + Nitrite as N	ND	0.1	mg/L		1	Ul	04/19/2023	12:25	ldm	EPA 300.0	04/19/2023	19:43	ldm
Fluoride	0.2	0.1	mg/L		1		04/19/2023	12:25	ldm	EPA 300.0	04/19/2023	19:43	ldm
Total Anions	10.4		meq/L		1	lJb	04/24/2023	15:10	amm	SM 4500-H+B	04/24/2023	22:45	amm
pH	7.6		units		1		04/18/2023	12:11	ab	SM 4500-H+B	04/18/2023	12:11	ab
Specific Conductance	914	1	umhos/cm		1		04/24/2023	15:10	amm	SM 4500-H+B	04/24/2023	22:45	amm
Total Dissolved Solids	550	20	mg/L		1		04/21/2023	10:15	ctl	SM 2540 C	04/24/2023	11:50	ctl
MBAS (foaming agents)	Negative	0.1	mg/L		1	U	04/20/2023	07:11	krh	SM 5540 C	04/20/2023	07:24	krh
Aggressiveness Index	12.4	1			1		04/18/2023	12:11	ab	SM 4500-H+B	04/18/2023	12:11	ab
Langelier Index (20°C)	0.5	1			1		04/18/2023	12:11	ab	SM 4500-H+B	04/18/2023	12:11	ab
Nitrate Nitrogen	ND	0.1	mg/L		1	Ul	04/19/2023	12:25	ldm	EPA 300.0	04/19/2023	19:43	ldm

DQF Flags Definition:

- l The MS/MSD did not meet QC criteria.
- Constituent results were non-detect.
- Reported value is estimated; detected at a concentration below the RL and above the laboratory MDL.
- $b \quad \text{ The Blank was positive for constituent but less than the PQL} \\$

ND=Non-Detected, RL=Reporting Level, Dil.=Dilution

Section: Sample Results Page 2 of 6 Page 2 of 6 April 27, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane

Suite 110

San Luis Obispo, CA 93401

20H1 (LA30) Description:

Los Osos BMC Monitoring **Project**

Lab No. : CC 2381199-001

Customer No.: 8000514

Sampled On : April 18, 2023 at 12:11

Sampled By : Andrea Berge

Received On : April 18, 2023 at 12:42

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.57		units		04/18/2023 12:11	4500HB	04/18/2023 12:11

May 25, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

13M2 LA31 Description:

Los Osos BMC Monitoring **Project**

Lab No. : CC 2381435-001

Customer No.: 8000514

Sampled On : May 4, 2023 at 13:30

Sampled By : Andrea Berge

Received On: May 4, 2023 at 15:23

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sar	nple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	352	2.5	mg/L		1		05/15/2023	07:00	ac	2340B	05/15/2023	10:31	ac
Calcium	52	1	mg/L		1		05/15/2023	07:00	ac	EPA 200.7	05/15/2023	10:31	ac
Magnesium	54	1	mg/L		1		05/15/2023	07:00	ac	EPA 200.7	05/15/2023	10:31	ac
Potassium	4	1	mg/L		1		05/15/2023	07:00	ac	EPA 200.7	05/15/2023	10:31	ac
Sodium	272	1	mg/L		1		05/15/2023	07:00	ac	EPA 200.7	05/15/2023	10:31	ac
Total Cations	19.0		meq/L		1		05/15/2023	07:00	ac	Calc.	05/15/2023	10:31	ac
Boron	0.1	0.1	mg/L		1		05/15/2023	07:00	ac	EPA 200.7	05/15/2023	10:31	ac
Copper	ND	10	ug/L		1	J	05/15/2023	07:00	ac	EPA 200.7	05/15/2023	10:31	ac
Iron	80	30	ug/L		1		05/15/2023	07:00	ac	EPA 200.7	05/15/2023	10:31	ac
Manganese	ND	10	ug/L		1	U	05/15/2023	07:00	ac	EPA 200.7	05/15/2023	10:31	ac
Zinc	ND	20	ug/L		1	J	05/15/2023	07:00	ac	EPA 200.7	05/15/2023	10:31	ac
SAR	6.3	0.1			1		05/15/2023	07:00	ac	Calc.	05/15/2023	10:31	ac
Total Alkalinity (as CaCO3)	50	10	mg/L		1	I	05/08/2023	16:26	amm	SM 4500-H+B	05/08/2023	18:24	amm
Hydroxide as OH	ND	10	mg/L		1	U	05/08/2023	16:26	amm	SM 4500-H+B	05/08/2023	18:24	amm
Carbonate as CO3	ND	10	mg/L		1	U	05/08/2023	16:26	amm	SM 4500-H+B	05/08/2023	18:24	amm
Bicarbonate as HCO3	70	10	mg/L		1	I	05/08/2023	16:26	amm	SM 4500-H+B	05/08/2023	18:24	amm
Sulfate	121	0.5	mg/L		1		05/05/2023	14:29	ldm	EPA 300.0	05/06/2023	15:09	ldm
Chloride	599	11*	mg/L		10	b	05/05/2023	14:29	ldm	EPA 300.0	05/06/2023	21:45	ldm
Nitrate as NO3	2.9	0.4	mg/L		1	l	05/05/2023	14:29	ldm	EPA 300.0	05/06/2023	15:09	ldm
Nitrite as N	ND	0.1	mg/L		1	U	05/05/2023	14:29	ldm	EPA 300.0	05/06/2023	15:09	ldm
Nitrate + Nitrite as N	0.6	0.1	mg/L		1	1	05/05/2023	14:29	ldm	EPA 300.0	05/06/2023	15:09	ldm
Fluoride	ND	0.1	mg/L		1	J	05/05/2023	14:29	ldm	EPA 300.0	05/06/2023	15:09	ldm
Total Anions	20.6		meq/L		1	IblJ	05/08/2023	16:26	amm	Calc.	05/08/2023	18:24	amm
pH	7.1		units		1		05/04/2023	13:30	ab	SM 4500-H+B	05/04/2023	13:30	ab
Specific Conductance	2180	1	umhos/cm		1		05/08/2023	16:26	amm	SM 4500-H+B	05/08/2023	18:24	amm
Total Dissolved Solids	1370	20	mg/L		1		05/08/2023	11:45	ctl	SM 2540 C	05/09/2023	12:45	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	05/05/2023	16:16	krh	SM 5540 C	05/05/2023	16:24	krh
Aggressiveness Index	10.9	1			1		05/04/2023	13:30	ab	Calc.	05/04/2023	13:30	ab
Langelier Index (20°C)	-1.0	1			1	I	05/04/2023	13:30	ab	Calc.	05/04/2023	13:30	ab
Nitrate Nitrogen	0.6	0.1	mg/L		1	1	05/05/2023	14:29	ldm	EPA 300.0	05/06/2023	15:09	ldm

DQF Flags Definition:

- J Reported value is estimated; detected at a concentration below the RL and above the laboratory MDL.
- Constituent results were non-detect.
- I The RPD for the laboratory duplicate exceeded laboratory criteria.
- The Blank was positive for constituent but less than the PQL
- 1 The MS/MSD did not meet QC criteria.

ND=Non-Detected, RL=Reporting Level * RL adusted for dilution, Dil.=Dilution

Section: Sample Results Page 2 of 6 Page 2 of 6 May 25, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

13M2 LA31 Description:

Los Osos BMC Monitoring **Project**

Lab No. : CC 2381435-001

Customer No.: 8000514

Sampled On: May 4, 2023 at 13:30

Sampled By : Andrea Berge

Received On: May 4, 2023 at 15:23

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.10		units		05/04/2023 13:30	4500HB	05/04/2023 13:30

ND=Non-Detected, RL=Reporting Level. * RL adusted for dilution

FAX: (805)783-2912 FAX: (559)734-8435 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810 June 8, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane

Suite 110

Project

San Luis Obispo, CA 93401

Description: 18K9 (LA32)

Los Osos BMC Monitoring

Lab No. : CC 2381030-002

Customer No.: 8000514

Sampled On : April 5, 2023 at 12:24

Sampled By: Iason Pitsillides

Received On : April 5, 2023 at 14:27

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repa <u>r</u> a	tion	Sar	nple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	169	2.5	mg/L		1		04/07/2023	12:00	ac	2340B	04/07/2023	15:54	ac
Calcium	25	1	mg/L		1		04/07/2023	12:00	ac	EPA 200.7	04/07/2023	15:54	ac
Magnesium	26	1	mg/L		1		04/07/2023	12:00	ac	EPA 200.7	04/07/2023	15:54	ac
Potassium	1	1	mg/L		1		04/07/2023	12:00	ac	EPA 200.7	04/07/2023	15:54	ac
Sodium	33	1	mg/L		1		04/07/2023	12:00	ac	EPA 200.7	04/07/2023	15:54	ac
Total Cations	4.8		meq/L		1		04/07/2023	12:00	ac	Calc.	04/07/2023	15:54	ac
Boron	ND	0.1	mg/L		1	J	04/07/2023	12:00	ac	EPA 200.7	04/07/2023	15:54	ac
Copper	ND	10	ug/L		1	J	04/07/2023	12:00	ac	EPA 200.7	04/07/2023	15:54	ac
Iron	ND	30	ug/L		1	J	04/07/2023	12:00	ac	EPA 200.7	04/07/2023	15:54	ac
Manganese	ND	10	ug/L		1	U	04/07/2023	12:00	ac	EPA 200.7	04/07/2023	15:54	ac
Zinc	30	20	ug/L		1		04/07/2023	12:00	ac	EPA 200.7	04/07/2023	15:54	ac
SAR	1.1	0.1			1		04/07/2023	12:00	ac	Calc.	04/07/2023	15:54	ac
Total Alkalinity (as CaCO3)	160	10	mg/L		1		04/09/2023	17:34	amm	SM 4500-H+B	04/10/2023	06:25	amm
Hydroxide as OH	ND	10	mg/L		1	U	04/09/2023	17:34	amm	SM 4500-H+B	04/10/2023	06:25	amm
Carbonate as CO3	ND	10	mg/L		1	U	04/09/2023	17:34	amm	SM 4500-H+B	04/10/2023	06:25	amm
Bicarbonate as HCO3	190	10	mg/L		1		04/09/2023	17:34	amm	SM 4500-H+B	04/10/2023	06:25	amm
Sulfate	22.8	0.5	mg/L		1	l	04/06/2023	16:30	ldm	EPA 300.0	04/06/2023	18:50	krh
Chloride	38	1	mg/L		1	1	04/06/2023	16:30	ldm	EPA 300.0	04/06/2023	18:50	krh
Nitrate as NO3	6.0	0.4	mg/L		1		04/06/2023	16:30	ldm	EPA 300.0	04/06/2023	18:50	krh
Nitrite as N	ND	0.1	mg/L		1	U	04/06/2023	16:30	ldm	EPA 300.0	04/06/2023	18:50	krh
Nitrate + Nitrite as N	1.4	0.1	mg/L		1		04/06/2023	16:30	ldm	EPA 300.0	04/06/2023	18:50	krh
Fluoride	0.1	0.1	mg/L		1		04/06/2023	16:30	ldm	EPA 300.0	04/06/2023	18:50	krh
Total Anions	4.8		meq/L		1	l	04/09/2023	17:34	amm	Calc.	04/10/2023	06:25	amm
pH	7.2		units		1		04/05/2023	12:24	ip	SM 4500-H+B	04/05/2023	12:24	ip
Specific Conductance	465	1	umhos/cm		1		04/09/2023	17:34	amm	SM 4500-H+B	04/10/2023	06:25	amm
Total Dissolved Solids	290	20	mg/L		1		04/07/2023	16:00	ctl	SM 2540 C	04/10/2023	11:00	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	04/06/2023	18:03	krh	SM 5540 C	04/06/2023	18:17	krh
Aggressiveness Index	11.2	1			1		04/05/2023	12:24	ip	Calc.	04/05/2023	12:24	ip
Langelier Index (20°C)	-0.6	1			1		04/05/2023	12:24	ip	Calc.	04/05/2023	12:24	ip
Nitrate Nitrogen	1.4	0.1	mg/L		1		04/06/2023	16:30	ldm	EPA 300.0	04/06/2023	18:50	krh

DQF Flags Definition:

- J Reported value is estimated; detected at a concentration below the RL and above the laboratory MDL.
- Constituent results were non-detect.
- l The MS/MSD did not meet QC criteria.

ND=Non-Detected, RL=Reporting Level, Dil.=Dilution

Section: Sample Results Page 4 of 9 Amended Page 4 of 9 June 8, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

Description: 18K9 (LA32)

Los Osos BMC Monitoring **Project**

Lab No. : CC 2381030-002

Customer No.: 8000514

Sampled On : April 5, 2023 at 12:24

Sampled By: Iason Pitsillides

Received On : April 5, 2023 at 14:27

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	San	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.15		units		04/05/2023 12:24	4500HB	04/05/2023 12:24

April 19, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane

Suite 110

San Luis Obispo, CA 93401

Los Olivos #5 (LA39 18K) Description: Los Osos BMC Monitoring **Project**

Lab No. : CC 2381084-002

Customer No.: 8000514

Sampled On : April 11, 2023 at 08:00

Sampled By : Jereme Dengate

Received On : April 11, 2023 at 14:09

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sar	mple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	214	2.5	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:54	ac
Calcium	33	1	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:54	ac
Magnesium	32	1	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:54	ac
Potassium	1	1	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:54	ac
Sodium	40	1	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:54	ac
Total Cations	6.0		meq/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:54	ac
Boron	ND	0.1	mg/L		1	J	04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:54	ac
Copper	ND	10	ug/L		1	U	04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:54	ac
Iron	ND	30	ug/L		1	J	04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:54	ac
Manganese	ND	10	ug/L		1	U	04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:54	ac
Zinc	ND	20	ug/L		1	U	04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:54	ac
SAR	1.2	0.1			1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	16:54	ac
Total Alkalinity (as CaCO3)	260	10	mg/L		1		04/16/2023	16:18	amm	SM 4500-H+B	04/17/2023	00:25	amm
Hydroxide as OH	ND	10	mg/L		1	U	04/16/2023	16:18	amm	SM 4500-H+B	04/17/2023	00:25	amm
Carbonate as CO3	ND	10	mg/L		1	U	04/16/2023	16:18	amm	SM 4500-H+B	04/17/2023	00:25	amm
Bicarbonate as HCO3	310	10	mg/L		1		04/16/2023	16:18	amm	SM 4500-H+B	04/17/2023	00:25	amm
Sulfate	30.1	0.5	mg/L		1		04/12/2023	10:19	ldm	EPA 300.0	04/12/2023	23:19	ldm
Chloride	38	1	mg/L		1	b	04/12/2023	10:19	ldm	EPA 300.0	04/12/2023	23:19	ldm
Nitrate as NO3	ND	0.4	mg/L		1	J	04/12/2023	10:19	ldm	EPA 300.0	04/12/2023	23:19	ldm
Nitrite as N	ND	0.1	mg/L		1	Jb	04/12/2023	10:19	ldm	EPA 300.0	04/12/2023	23:19	ldm
Nitrate + Nitrite as N	ND	0.1	mg/L		1	J	04/12/2023	10:19	ldm	EPA 300.0	04/12/2023	23:19	ldm
Fluoride	0.1	0.1	mg/L		1		04/12/2023	10:19	ldm	EPA 300.0	04/12/2023	23:19	ldm
Total Anions	6.8		meq/L		1	bJ	04/16/2023	16:18	amm	SM 4500-H+B	04/17/2023	00:25	amm
pH	7.5		units		1		04/11/2023	08:00	jd	SM 4500-H+B	04/11/2023	08:00	jd
Specific Conductance	626	1	umhos/cm		1		04/16/2023	16:18	amm	SM 4500-H+B	04/17/2023	00:25	amm
Total Dissolved Solids	340	20	mg/L		1		04/13/2023	10:20	ctl	SM 2540 C	04/14/2023	11:30	ctl
MBAS (foaming agents)	Negative	0.1	mg/L		1	U	04/12/2023	17:44	krh	SM 5540 C	04/12/2023	17:58	krh
Aggressiveness Index	11.8	1			1		04/11/2023	08:00	jd	SM 4500-H+B	04/11/2023	08:00	jd
Langelier Index (20°C)	-0.02	1			1		04/11/2023	08:00	jd	SM 4500-H+B	04/11/2023	08:00	jd
Nitrate Nitrogen	ND	0.1	mg/L		1	J	04/12/2023	10:19	ldm	EPA 300.0	04/12/2023	23:19	ldm

DQF Flags Definition:

- J Reported value is estimated; detected at a concentration below the RL and above the laboratory MDL.
- Constituent results were non-detect.
- b The Blank was positive for constituent but less than the PQL

ND=Non-Detected, RL=Reporting Level, Dil.=Dilution

Section: Sample Results Page 4 of 13 Page 4 of 13 April 19, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

Description: Los Olivos #5 (LA39 18K) Los Osos BMC Monitoring **Project**

Lab No. : CC 2381084-002

Customer No.: 8000514

Sampled On : April 11, 2023 at 08:00

Sampled By : Jereme Dengate

Received On : April 11, 2023 at 14:09

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	San	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.5		units		04/11/2023 08:00	4500HB	04/11/2023 08:00
Temperature	70		°C		04/11/2023 08:00	2550B	04/11/2023 08:00
Conductivity	718		umhos/cm		04/11/2023 08:00	2510B	04/11/2023 08:00

ND=Non-Detected, RL=Reporting Level.

FAX: (805)783-2912 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810

May 10, 2023

Project

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

13 Ba (LA40) Description:

Los Osos BMC Monitoring

Lab No. : CC 2381164-001

Customer No.: 8000514

Sampled On : April 12, 2023 at 16:37

Sampled By: Iason Pitsillides

Received On : April 13, 2023 at 10:15

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	San	ıple Analys	is	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	4570	2.5	mg/L		1		04/18/2023	07:00	ac	2340B	04/18/2023	16:53	ac
Calcium	575	1	mg/L		1		04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:53	ac
Magnesium	762	5*	mg/L		5		04/18/2023	07:00	ac	EPA 200.7	04/20/2023	21:35	ac
Potassium	7	1	mg/L		1		04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:53	ac
Sodium	198	1	mg/L		1		04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:53	ac
Total Cations	100		meq/L		1		04/18/2023	07:00	ac	Calc.	04/18/2023	16:53	ac
Boron	ND	0.1	mg/L		1	Ul	04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:53	ac
Copper	ND	10	ug/L		1	J	04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:53	ac
Iron	ND	30	ug/L		1	J	04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:53	ac
Manganese	600	10	ug/L		1		04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:53	ac
Zinc	ND	20	ug/L		1	Ul	04/18/2023	07:00	ac	EPA 200.7	04/18/2023	16:53	ac
SAR	1.3	0.1			1		04/18/2023	07:00	ac	Calc.	04/18/2023	16:53	ac
Total Alkalinity (as CaCO3)	230	10	mg/L		1		04/24/2023	15:10	amm	SM 4500-H+B	04/25/2023	01:50	amm
Hydroxide as OH	ND	10	mg/L		1	U	04/24/2023	15:10	amm	SM 4500-H+B	04/25/2023	01:50	amm
Carbonate as CO3	ND	10	mg/L		1	U	04/24/2023	15:10	amm	SM 4500-H+B	04/25/2023	01:50	amm
Bicarbonate as HCO3	280	10	mg/L		1		04/24/2023	15:10	amm	SM 4500-H+B	04/25/2023	01:50	amm
Sulfate	232	1*	mg/L		2		05/08/2023	12:45	ldm	EPA 300.0	05/08/2023	17:46	ldm
Chloride	2820	56*	mg/L		60		05/08/2023	12:45	ldm	EPA 300.0	05/09/2023	00:44	ldm
Nitrate as NO3	0.7	0.4	mg/L		1	J	04/14/2023	15:00	lfs	SM 4500-NO3 F	04/14/2023	18:18	lfs
Nitrite as N	ND	0.2	mg/L		1	UT	04/14/2023	17:00	lfs	SM 4500-NO3 F	04/14/2023	18:17	lfs
Nitrate + Nitrite as N	ND	0.4	mg/L		1	U	04/14/2023	15:00	lfs	SM 4500-NO3 F	04/14/2023	18:18	lfs
Fluoride	ND	0.2*	mg/L		2	J	05/08/2023	12:45	ldm	EPA 300.0	05/08/2023	17:46	ldm
Total Anions	89.0		meq/L		1	J	04/24/2023	15:10	amm	Calc.	04/25/2023	01:50	amm
pH	7.3		units		1		04/12/2023	16:37	ip	SM 4500-H+B	04/12/2023	16:37	ip
Specific Conductance	9020	1	umhos/cm		1		04/24/2023	15:10	amm	SM 4500-H+B	04/25/2023	01:50	amm
Total Dissolved Solids	5870	20	mg/L		1		04/17/2023	11:06	ctl	SM 2540 C	04/18/2023	11:20	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	UT	04/15/2023	09:36	krh	SM 5540 C	04/15/2023	09:51	krh
Aggressiveness Index	12.8	1			1		04/12/2023	16:37	ip	Calc.	04/12/2023	16:37	ip
Langelier Index (20°C)	8.0	1			1		04/12/2023	16:37	ip	Calc.	04/12/2023	16:37	ip
Nitrate Nitrogen	ND	0.4	mg/L		1	U	04/14/2023	15:00	lfs	SM 4500-NO3 F	04/14/2023	18:18	lfs

DOF Flags Definition:

- U Constituent results were non-detect.
- $l \quad \text{The MS/MSD did not meet QC criteria.} \\$
- Reported value is estimated; detected at a concentration below the RL and above the laboratory MDL.
- T Exceeded method/regulatory-specific holding time.

ND=Non-Detected, RL=Reporting Level * RL adusted for dilution, Dil.=Dilution

Section: Sample Results Page 3 of 7 Page 3 of 7

CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810

May 10, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

Description: 13 Ba (LA40)

Los Osos BMC Monitoring **Project**

Lab No. : CC 2381164-001

Customer No.: 8000514

Sampled On : April 12, 2023 at 16:37

Sampled By: Iason Pitsillides

Received On : April 13, 2023 at 10:15

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	San	iple Analysis
Field Test					Date	Method	Date
pH (Field)	7.34		units		04/12/2023 16:37	4500HB	04/12/2023 16:37

ND=Non-Detected, RL=Reporting Level. * RL adusted for dilution

April 25, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane

Suite 110

San Luis Obispo, CA 93401

13Bb (LA41) Description:

Los Osos BMC Monitoring **Project**

Lab No. : CC 2381102-001

Customer No.: 8000514

Sampled On : April 11, 2023 at 14:04

Sampled By: Iason Pitsillides

Received On : April 11, 2023 at 15:35

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sar	nple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	260	2.5	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:40	ac
Calcium	48	1	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:40	ac
Magnesium	34	1	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:40	ac
Potassium	2	1	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:40	ac
Sodium	47	1	mg/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:40	ac
Total Cations	7.3		meq/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:40	ac
Boron	ND	0.1	mg/L		1	J	04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:40	ac
Copper	ND	10	ug/L		1	U	04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:40	ac
Iron	70	30	ug/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:40	ac
Manganese	90	10	ug/L		1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:40	ac
Zinc	ND	20	ug/L		1	J	04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:40	ac
SAR	1.3	0.1			1		04/13/2023	13:00	ac	EPA 200.7	04/13/2023	17:40	ac
Total Alkalinity (as CaCO3)	280	10	mg/L		1		04/16/2023	16:18	amm	SM 4500-H+B	04/17/2023	03:58	amm
Hydroxide as OH	ND	10	mg/L		1	U	04/16/2023	16:18	amm	SM 4500-H+B	04/17/2023	03:58	amm
Carbonate as CO3	ND	10	mg/L		1	U	04/16/2023	16:18	amm	SM 4500-H+B	04/17/2023	03:58	amm
Bicarbonate as HCO3	340	10	mg/L		1		04/16/2023	16:18	amm	SM 4500-H+B	04/17/2023	03:58	amm
Sulfate	58.0	0.5	mg/L		1		04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	07:41	ldm
Chloride	51	1	mg/L		1		04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	07:41	ldm
Nitrate as NO3	ND	0.4	mg/L		1	U	04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	07:41	ldm
Nitrite as N	ND	0.1	mg/L		1	U	04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	07:41	ldm
Nitrate + Nitrite as N	ND	0.1	mg/L		1	U	04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	07:41	ldm
Fluoride	0.1	0.1	mg/L		1		04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	07:41	ldm
Total Anions	8.2		meq/L		1		04/16/2023	16:18	amm	SM 4500-H+B	04/17/2023	03:58	amm
pH	7.5		units		1		04/11/2023	14:04	ip	SM 4500-H+B	04/11/2023	14:04	ip
Specific Conductance	764	1	umhos/cm		1		04/16/2023	16:18	amm	SM 4500-H+B	04/17/2023	03:58	amm
Total Dissolved Solids	440	20	mg/L		1		04/13/2023	10:20	ctl	SM 2540 C	04/14/2023	11:30	ctl
MBAS (foaming agents)	Negative	0.1	mg/L		1	U	04/12/2023	17:44	krh	SM 5540 C	04/12/2023	17:58	krh
Aggressiveness Index	12.0	1			1		04/11/2023	14:04	ip	SM 4500-H+B	04/11/2023	14:04	ip
Langelier Index (20°C)	0.2	1			1		04/11/2023	14:04	ip	SM 4500-H+B	04/11/2023	14:04	ip
Nitrate Nitrogen	ND	0.1	mg/L		1	U	04/12/2023	14:30	ldm	EPA 300.0	04/13/2023	07:41	ldm

DQF Flags Definition:

ND=Non-Detected, RL=Reporting Level, Dil.=Dilution

Reported value is estimated; detected at a concentration below the RL and above the laboratory MDL.

U Constituent results were non-detect.

April 25, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

Description: 13Bb (LA41)

Los Osos BMC Monitoring **Project**

Lab No. : CC 2381102-001

Customer No.: 8000514

Sampled On : April 11, 2023 at 14:04

Sampled By: Iason Pitsillides

Received On : April 11, 2023 at 15:35

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.52		units		04/11/2023 14:04	4500HB	04/11/2023 14:04

Date:	10/20/2023
Operator:	A. Berge, I. Pitsillides

Well number and location: 30S/10E-24A (FW6)

Site and wellhead conditions: Sunny, warm, and still. Monument secure and locked.

Static water depth (feet):	140.27
Well depth (feet):	165.93
Water column (feet):	25.66
Casing diameter (inches):	2
Minimum purge volume (gal)	15
Purge rate (gpm):	0.7
Pumping water level (feet):	140.37
Pump setting (feet):	150
Minimum purge time (min):	
Time begin purge:	11:26 AM

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
11:26	1	841.3	6.76	19.5	Cloudy, colorless, odorless
11:32	5	834.5	6.71	20.2	Slightly cloudy, white/grey, odorless
11:37	7	841.3	6.68	19.7	Slightly cloudy, colorless, odorless
11:39	10	838.9	6.60	20.5	Slightly cloudy, colorless, odorless
11:44	13	838.0	6.67	20.4	Slightly cloudy, colorless, odorless
11:47	15	837.9	6.68	20.2	Clear, colorless, odorless
					Sampled @ 11:45

^{*}Turbidity, color, odor, sheen, debris, etc.

Date:	11/14/2023	
Operator:	I. Pitsillides	

Well number and location: 30S/11E-7Q1 (FW10)

Site and wellhead conditions: Sunny and warm. Lock in place.

Static water depth (feet):	8.73
Well depth (feet):	68.93
Water column (feet):	60.2
Casing diameter (inches):	5
Minimum purge volume (gal)	185
Purge rate (gpm):	1.9
Pumping water level (feet):	28.02
Pump setting (feet):	40
Minimum purge time (min):	98
Time begin purge:	14:12

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
14:12	1	500.2	8.58	18.5	Clear, rust color, odorless
14:13	5	477.4	7.92	18.5	Clear, rust color, odorless
14:16	10	485.2	7.96	18.4	Clear, colorless, odorless
14:23	20	487.7	7.93	18.3	Clear, colorless, odorless
14:34	40	495.6	7.72	18.4	Clear, colorless, odorless
14:55	80	505.0	7.80	18.5	Clear, colorless, odorless
15:16	120	517.1	7.17	18.6	Clear, colorless, odorless
15:37	160	525.5	6.85	18.5	Clear, colorless, odorless
15:42	170	529.0	6.83	18.4	Clear, colorless, odorless
15:45	175	532.3	6.81	18.5	Clear, colorless, odorless
15:47	180	529.6	6.76	18.5	Clear, colorless, odorless
15:50	185	533.0	6.76	18.5	Clear, colorless, odorless
					Sampled @ 15:41

^{*}Turbidity, color, odor, sheen, debris, etc.

Date: 10/26/2023 Operator: I. Pitsillide:					
Well number and location:	30S/11E-20M2 (FW28)				
Site and wellhead conditions:	Sunny and warm. Pump is currently running.				
Static water depth (feet):	27.1 on Oct 13				
Well depth (feet):	102				
Water column (feet):	74.9				
Casing diameter (inches):					
Minimum purge volume (gal)	flush line				
Purge rate (gpm):					
Pumping water level (feet):					
Pump setting (feet):					
Minimum purge time (min):	flush line				
Time begin purge:					

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
9:57	1	870.4	7.78	16.7	Clear, colorless, odorless
10:00	5	743.0	7.79	16.2	Clear, colorless, odorless
10:03	10	732.7	7.71	16.2	Clear, colorless, odorless
10:09	20	733.2	7.28	16.3	Clear, colorless, odorless
10:15	30	734.5	7.18	16.4	Clear, colorless, odorless
					Sampled @ 10:17

^{*}Turbidity, color, odor, sheen, debris, etc.

Date: 10/9/202	23
Operator: I. Pitsillid	des
Well number and location:	30S/11E-17E10 (UA13)
Site and wellhead conditions	s: Cloudy and slightly breezy. Pump running for ~3 hours.
Static water depth (feet):	94.3 on Oct 17
Well depth (feet):	142
Water column (feet):	47.7
Casing diameter (inches):	8
Minimum purge volume (gal)) flush line
Purge rate (gpm):	
Pumping water level (feet):	<u></u>
Pump setting (feet):	
Minimum purge time (min):	flush line
Time begin purge:	9:58

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
9:58	flush line	528.0	8.54	17.7	Clear, colorless, odorless
10:00	flush line	520.0	8.21	17.7	Clear, colorless, odorless
10:01	flush line	519.0	8.04	17.7	Clear, colorless, odorless
10:03	flush line	522.0	8.04	17.7	Clear, colorless, odorless
					Sampled @ 10:04

^{*}Turbidity, color, odor, sheen, debris, etc.

Date: 10/4/202	3
Operator: I. Pitsillide	es es
Well number and location:	30S/11E-13N (LA8)
Site and wellhead conditions:	Pump turned on @ 12:45 PM
Static water depth (feet):	133.4 on Oct 19
Well depth (feet):	350
Water column (feet):	216.6
Casing diameter (inches):	8
Minimum purge volume (gal)	flush line
Purge rate (gpm):	
Pumping water level (feet):	
Pump setting (feet):	
Minimum purge time (min):	flush line
Time begin purge:	13:03

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
13:03	flush line	406.8	8.03	18.8	Clear, colorless, odorless
13:05	flush line	400.1	7.91	18.6	Clear, colorless, odorless
13:06	flush line	397.0	7.79	18.6	Clear, colorless, odorless
13:07	flush line	397.3	7.72	18.2	Clear, colorless, odorless
13:10	flush line	369.1	7.63	18.5	Clear, colorless, odorless
13:13	flush line	369.0	7.59	18.5	Clear, colorless, odorless
					Sampled @ 13:14

^{*}Turbidity, color, odor, sheen, debris, etc.

Date:	10/4/2023
Operator:	I Pitsillides

Well number and location: 30S/10E-12J1 (LA11)

Site and wellhead conditions: Sunny and warm.

2.65
398
395.35
2
200
2.0
8.78
25
98
9:41

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
9:42	1	1,152	7.81	19.1	Clear, colorless, sulphur odor
9:45	5	1,149	7.35	18.5	Clear, colorless, sulphur odor
9:47	10	1,144	7.30	18.6	Clear, colorless, sulphur odor
9:52	20	1,149	7.28	19.2	Clear, colorless, sulphur odor
10:04	45	1,119	7.22	20.1	Clear, colorless, slight sulphur odor
10:11	60	1,399	7.12	20.6	Cloudy, colorless, slight sulphur odor
10:19	75	1,455	7.12	20.8	Cloudy, colorless, slight sulphur odor
10:32	100	1,433	7.36	21.3	Clear, colorless, slight sulphur odor
10:42	120	1,423	7.45	21.2	Clear, colorless, slight sulphur odor
10:54	145	1,403	7.27	21.1	Clear, colorless, slight sulphur odor
11:08	170	1,396	7.47	21.3	Clear, colorless, slight sulphur odor
11:16	190	1,391	7.48	21.3	Clear, colorless, slight sulphur odor
11:19	195	1,383	7.48	21.2	Clear, colorless, slight sulphur odor
11:20	200	1,380	7.38	21.2	Clear, colorless, slight sulphur odor
					Sampled @ 11:21

^{*}Turbidity, color, odor, sheen, debris, etc.

Date:	10/11/2023
Operator:	L Pitsillides

Well number and location: 30S/11E-18F2 (LA13)

Site and wellhead conditions: Sunny and site secure.

Static water depth (feet):	100.0	
Well depth (feet):	530	
Water column (feet):	430.0	
Casing diameter (inches):	2.5	
Minimum purge volume (gal)	330	
Purge rate (gpm):	1.64	
Pumping water level (feet):	103.13	
Pump setting (feet):	120	
Minimum purge time (min):	201	
Time begin purge:	10:13	

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
10:13	0	324.4	7.96	20.4	Cloudy, colorless, sulphur odor
10:15	5	545.6	7.94	20	Cloudy, colorless, sulphur odor
10:18	10	561.2	7.95	20	Cloudy, colorless, slight sulphur odor
10:24	20	569.5	7.96	20.2	Cloudy, colorless, slight sulphur odor
10:36	40	570.6	7.95	20.5	Cloudy, colorless, slight sulphur odor
11:00	50	575.3	8.03	21.9	Clear, colorless, odorless
11:24	120	576.5	8.16	22.3	Clear, colorless, odorless
12:00	180	566.3	7.96	22	Clear, colorless, odorless
12:36	240	562.8	7.87	22.2	Clear, colorless, odorless
13:00	280	565.8	7.82	21.6	Clear, colorless, odorless
13:28	320	567.4	7.76	22.4	Clear, colorless, odorless
13:31	325	569.4	7.73	22.4	Clear, colorless, odorless
13:34	330	569.5	7.73	22.4	Clear, colorless, odorless
					Sampled @ 13:36

^{*}Turbidity, color, odor, sheen, debris, etc.

Date: 10/9/2023	
Operator: I. Pitsillide	
Well number and location:	30S/11E-18L2 (LA15)
Site and wellhead conditions:	Cloudy and cool. Pump running for ~6.4 hours.
Static water depth (feet):	88.5 on Oct 17
Well depth (feet):	394
Water column (feet):	306
Casing diameter (inches):	12
Minimum purge volume (gal)	flush line
Purge rate (gpm):	<u></u>
Pumping water level (feet):	<u></u>
Pump setting (feet):	<u></u>
Minimum purge time (min):	flush line
Time begin purge:	

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
11:45	flush line	858.0	7.58	19.4	Clear, colorless, odorless
11:46	flush line	863.0	7.38	19	Clear, colorless, odorless
11:48	flush line	862.0	7.39	19.2	Clear, colorless, odorless
11:49	flush line	866.0	7.37	19.1	Clear, colorless, odorless
					Sampled @ 11:50

^{*}Turbidity, color, odor, sheen, debris, etc.

Date:	10/17/2023
Operator:	J. Carlson, J. Raney

Well number and location: 30S/11E-18K8 (LA18)

Site and wellhead conditions: Site secure.

Static water depth (feet):	118.3
Well depth (feet):	650
Water column (feet):	532
Casing diameter (inches):	2
Minimum purge volume (gal)	265
Purge rate (gpm):	1.2
Pumping water level (feet):	140.37
Pump setting (feet):	155
Minimum purge time (min):	228
Time begin purge:	9:02

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
9:02	1	499.0	8.32	19.2	Clear, colorless, odorless
9:07	5	487.0	7.59	19.1	Clear, colorless, odorless
9:12	10	499.0	7.09	19.0	Clear, colorless, odorless
9:20	20	485.0	6.70	19.4	Clear, colorless, odorless
9:28	30	565.0	6.58	19.5	Clear, colorless, odorless
9:47	50	623.0	6.85	19.9	Clear, colorless, odorless
10:20	80	622.0	7.03	21.1	Clear, colorless, odorless
10:53	120	624.0	7.07	20.3	Clear, colorless, odorless
11:34	170	626.0	7.19	22.1	Clear, colorless, odorless
12:12	220	628.0	7.12	22.1	Clear, colorless, odorless
12:29	240	625.0	7.11	21.9	Clear, colorless, odorless
12:42	255	615.0	7.09	22.3	Clear, colorless, odorless
12:46	260	621.0	7.21	22.1	Clear, colorless, odorless
12:50	265	617.0	7.10	22.8	Clear, colorless, odorless
			-		Sampled @ 12:60

^{*}Turbidity, color, odor, sheen, debris, etc.

 Date:
 10/17/2023

 Operator:
 J. Carlson, J. Raney

Well number and location: 30S/11E-17E8 (LA22)

Site and wellhead conditions: Sunny and breezy. Site secure.

Static water depth (feet):	115.46
Well depth (feet):	380
Water column (feet):	264.5
Casing diameter (inches):	2
Minimum purge volume (gal)	130
Purge rate (gpm):	1
Pumping water level (feet):	148.7
Pump setting (feet):	155
Minimum purge time (min):	100
Time begin purge:	13:25

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
13:26	1	545.0	7.80	19.1	Clear, colorless, odorless
13:30	5	544.0	7.59	19.4	Clear, colorless, odorless
13:35	10	531.0	7.49	19.5	Clear, colorless, odorless
13:42	20	487.0	7.30	19.6	Clear, colorless, odorless
13:46	25	481.0	7.21	19.1	Clear, colorless, odorless
13:57	35	484.0	7.02	19.5	Clear, colorless, odorless
14:08	50	477.0	6.39	19.5	Clear, colorless, odorless
14:29	75	475.0	6.37	19.5	Clear, colorless, odorless
14:45	100	477.0	7.06	20.1	Clear, colorless, odorless
14:48	105	472.0	7.08	19.6	Clear, colorless, odorless
14:55	115	474.0	7.03	19.5	Clear, colorless, odorless
14:59	120	471.0	7.02	19.6	Clear, colorless, odorless
15:02	125	472.0	6.99	19.6	Clear, colorless, odorless
15:06	130	471.0	7.00	19.6	Clear, colorless, odorless
			_		Sampled @ 15:10

^{*}Turbidity, color, odor, sheen, debris, etc.

Date: 10/23/202	3
Operator: I. Pitsillide	S
Well number and location:	30S/11E-20H1 (LA30)
Site and wellhead conditions:	Sunny with clouds.
Static water depth (feet):	11.13
Well depth (feet):	140
Water column (feet):	128.87
Casing diameter (inches):	6
Minimum purge volume (gal)	flush line
Purge rate (gpm):	<u></u>
Pumping water level (feet):	<u></u>
Pump setting (feet):	
Minimum purge time (min):	flush line
Time begin purge:	10:07

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
10:07	1	914.0	7.76	18.8	Clear, colorless, odorless
10:09	5	918.0	7.66	17.6	Clear, colorless, odorless
10:10	10	914.0	7.54	16.7	Clear, colorless, odorless
10:11	15	914.0	7.41	16.8	Clear, colorless, odorless
10:12	20	915.0	7.31	16.8	Clear, colorless, odorless
10:13	25	914.0	7.30	16.8	Clear, colorless, odorless
10:14	30	915.0	7.29	16.5	Clear, colorless, odorless
					Sampled @ 10:20

^{*}Turbidity, color, odor, sheen, debris, etc.

Date: 11/7/2023	<u> </u>
Operator: A. Berge	
Well number and location:	30S/10E-13M2 (LA31)
Site and wellhead conditions:	Sunny and cool.
Static water depth (feet):	42.82
Well depth (feet):	227
Water column (feet):	184.18
Casing diameter (inches):	8
Minimum purge volume (gal)	flush line
Purge rate (gpm):	
Pumping water level (feet):	
Pump setting (feet):	
Minimum purge time (min):	flush line
Time begin purge:	9:11

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
9:13	flush line	1,923	8.39	18.6	Clear, colorless, odorless
9:16	flush line	1,934	8.11	18.6	Clear, colorless, odorless
9:20	flush line	1,930	8.01	18.6	Clear, colorless, odorless
9:24	flush line	1,918	7.97	18.7	Clear, colorless, odorless
					Sampled @ 9:25

^{*}Turbidity, color, odor, sheen, debris, etc.

Date: 10/10/2023	3
Operator: I. Pitsillide	S
Well number and location:	30S/11E-18K9 (LA32)
Site and wellhead conditions:	Cloudy and cool.
Static water depth (feet):	149.6
Well depth (feet):	<u></u>
Water column (feet):	<u></u>
Casing diameter (inches):	<u></u>
Minimum purge volume (gal)	flush line
Purge rate (gpm):	
Pumping water level (feet):	
Pump setting (feet):	
Minimum purge time (min):	flush line
Time begin purge:	9:27

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
9:27	flush line	422.5	8.17	21.1	Clear, colorless, odorless
9:29	flush line	420.1	7.90	20.8	Clear, colorless, odorless
9:31	flush line	418.9	7.71	20.9	Clear, colorless, odorless
9:33	flush line	419.2	7.63	20.9	Clear, colorless, odorless
					Sampled @ 9:33

^{*}Turbidity, color, odor, sheen, debris, etc.

Date:	10/24/2023
Operator:	I. Pitsillides

Well number and location: 30S/11E-13Ba (LA40)

Site and wellhead conditions: Sunny and cool. Site secure.

Static water depth (feet):	7.5
Well depth (feet):	488
Water column (feet):	480.00
Casing diameter (inches):	2.16
Minimum purge volume (gal)	274
Purge rate (gpm):	1.0
Pumping water level (feet):	128.53
Pump setting (feet):	150
Minimum purge time (min):	300
Time begin purge:	9:23

Time	Gallons	EC (mS/cm)	рН	Temp. (°C)	Comments*
9:24	1	4.99	7.41	17.9	Clear, colorless, sulphur odor
9:32	5	4.98	7.28	18.2	Clear, colorless, slight sulphur odor
9:37	10	5.00	7.14	18.5	Clear, colorless, slight sulphur odor
10:00	20	4.92	7.31	18.9	Clear, colorless, slight sulphur odor
10:12	30	4.95	7.06	19.4	Clear, colorless, slight sulphur odor
10:51	50	4.77	7.05	19.9	Clear, colorless, slight sulphur odor
11:10	70	4.78	7.00	20.4	Clear, colorless, slight sulphur odor
11:49	100	5.49	6.96	21.3	Clear, colorless, odorless
12:27	130	5.73	6.97	21.5	Clear, colorless, odorless
13:18	170	5.83	6.98	21.6	Clear, colorless, odorless
13:53	200	5.82	6.94	21.7	Clear, colorless, odorless
14:10	220	5.79	6.91	21.6	Clear, colorless, odorless
					Sampled @ 14:12

^{*}Turbidity, color, odor, sheen, debris, etc.

Groundwater Monitoring Field Log LOBP Monitoring Program

Date: 10/20/2023
Operator: J. Raney

Well number and location: 30S/11E-13Bb (LA41)

Site and wellhead conditions: Sunny and warm. Site secure.

Static water depth (feet):	6.3
Well depth (feet):	350.00
Water column (feet):	343.70
Casing diameter (inches):	2.26
Minimum purge volume (gal)	170
Purge rate (gpm):	0.73
Pumping water level (feet):	99.20
Pump setting (feet):	150
Minimum purge time (min):	230
Time begin purge:	9:49

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
9:50	1	665.5	7.70	18.1	Clear, colorless, odorless
10:01	5	649.7	7.11	18.7	Clear, colorless, odorless
10:12	10	651.1	6.82	19.0	Clear, colorless, odorless
10:40	20	653.3	7.14	19.7	Clear, colorless, odorless
11:00	30	656.5	7.12	19.7	Clear, colorless, odorless
11:30	50	647.0	7.16	20.1	Clear, colorless, odorless
12:11	70	649.2	7.18	20.2	Clear, colorless, odorless
12:50	90	643.9	7.20	21.2	Clear, colorless, odorless
13:17	110	642.9	7.04	21.3	Clear, colorless, odorless
13:48	130	644.2	7.11	21.2	Clear, colorless, odorless
14:02	140	642.0	6.99	21.2	Clear, colorless, odorless
14:18	150	643.8	7.00	21.2	Clear, colorless, odorless
14:32	160	642.9	7.02	20.9	Clear, colorless, odorless
14:40	170	642.1	7.02	21.0	Clear, colorless, odorless
					Sampled @ 14:45

^{*}Turbidity, color, odor, sheen, debris, etc.

November 13, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

24A FW6 Description:

Los Osos BMC-Fall Springs **Project**

Lab No. : CC 2383818-001

Customer No.: 8000514

Sampled On : October 30, 2023 at 11:45

Sampled By : Andrea Berge

Received On: October 30, 2023 at 13:40

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sar	nple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	158	2.5	mg/L		1		10/31/2023	14:00	ac	2340B	10/31/2023	21:37	ac
Calcium	27	1	mg/L		1		10/31/2023	14:00	ac	EPA 200.7	10/31/2023	21:37	ac
Magnesium	22	1	mg/L		1		10/31/2023	14:00	ac	EPA 200.7	10/31/2023	21:37	ac
Potassium	2	1	mg/L		1		10/31/2023	14:00	ac	EPA 200.7	10/31/2023	21:37	ac
Sodium	105	1	mg/L		1		10/31/2023	14:00	ac	EPA 200.7	10/31/2023	21:37	ac
Total Cations	7.8		meq/L		1		10/31/2023	14:00	ac	Calc.	10/31/2023	21:37	ac
Boron	0.2	0.1	mg/L		1		10/31/2023	14:00	ac	EPA 200.7	10/31/2023	21:37	ac
Copper	ND	10	ug/L		1	U	10/31/2023	14:00	ac	EPA 200.7	10/31/2023	21:37	ac
Iron	380	30	ug/L		1		10/31/2023	14:00	ac	EPA 200.7	10/31/2023	21:37	ac
Manganese	10	10	ug/L		1		10/31/2023	14:00	ac	EPA 200.7	10/31/2023	21:37	ac
Zinc	ND	20	ug/L		1	U	10/31/2023	14:00	ac	EPA 200.7	10/31/2023	21:37	ac
SAR	3.6	0.1			1		10/31/2023	14:00	ac	Calc.	10/31/2023	21:37	ac
Total Alkalinity (as CaCO3)	150	10	mg/L		1		11/01/2023	18:07	amm	SM 4500-H+B	11/01/2023	22:15	amm
Hydroxide as OH	ND	10	mg/L		1	UI	11/01/2023	18:07	amm	SM 4500-H+B	11/01/2023	22:15	amm
Carbonate as CO3	ND	10	mg/L		1	UI	11/01/2023	18:07	amm	SM 4500-H+B	11/01/2023	22:15	amm
Bicarbonate as HCO3	180	10	mg/L		1	I	11/01/2023	18:07	amm	SM 4500-H+B	11/01/2023	22:15	amm
Sulfate	53.4	0.5	mg/L		1		10/31/2023	11:37	ldm	EPA 300.0	10/31/2023	18:21	ldm
Chloride	140	3*	mg/L		3		10/31/2023	11:37	ldm	EPA 300.0	11/01/2023	01:20	ldm
Nitrate as NO3	14.1	0.4	mg/L		1		10/31/2023	11:37	ldm	EPA 300.0	10/31/2023	18:21	ldm
Nitrite as N	ND	0.1	mg/L		1	U	10/31/2023	11:37	ldm	EPA 300.0	10/31/2023	18:21	ldm
Nitrate + Nitrite as N	3.2	0.1	mg/L		1		10/31/2023	11:37	ldm	EPA 300.0	10/31/2023	18:21	ldm
Fluoride	ND	0.1	mg/L		1	U	10/31/2023	11:37	ldm	EPA 300.0	10/31/2023	18:21	ldm
Total Anions	8.2		meq/L		1	I	11/01/2023	18:07	amm	Calc.	11/01/2023	22:15	amm
pH	6.68		units		1		10/30/2023	11:45	ab	SM 4500-H+B	10/30/2023	11:45	ab
Specific Conductance	878	1	umhos/cm		1		11/01/2023	18:07	amm	SM 4500-H+B	11/01/2023	22:15	amm
Total Dissolved Solids	510	20	mg/L		1		11/01/2023	11:20	ctl	SM 2540 C	11/02/2023	11:00	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	10/31/2023	14:40	amm	SM 5540 C	10/31/2023	14:50	amm
Aggressiveness Index	10.7	1			1		10/30/2023	11:45	ab	Calc.	10/30/2023	11:45	ab
Langelier Index (20°C)	-1.2	1			1		10/30/2023	11:45	ab	Calc.	10/30/2023	11:45	ab
Nitrate Nitrogen	3.2	0.1	mg/L		1		10/31/2023	11:37	ldm	EPA 300.0	10/31/2023	18:21	ldm

DQF Flags Definition:

U Constituent results were non-detect.

I The RPD for the laboratory duplicate exceeded laboratory criteria.

ND=Non-Detected, RL=Reporting Level * RL adjusted for dilution, Dil.=Dilution

Section: Sample Results Page 2 of 6 Page 2 of 6 November 13, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

FW6 24A FW6 Description:

Los Osos BMC-Fall Springs **Project**

Lab No. : CC 2383818-001

Customer No.: 8000514

Sampled On : October 30, 2023 at 11:45

Sampled By : Andrea Berge

Received On: October 30, 2023 at 13:40

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	San	ple Analysis
Field Test					Date	Method	Date
pH (Field)	6.68		units		10/30/2023 11:45	4500HB	10/30/2023 11:45

ND=Non-Detected, RL=Reporting Level. * RL adjusted for dilution

FAX: (805)783-2912 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810

November 27, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane

Suite 110

San Luis Obispo, CA 93401

7Q1 (FW10) Description:

FW10

Los Osos BMC-Fall Sampling **Project**

Lab No. : CC 2384090-001

Customer No.: 8000514

Sampled On : November 14, 2023 at 15:51

Sampled By: Iason Pitsillides

Received On: November 15, 2023 at 09:48

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sar	Sample Analysis		
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	103	2.5	mg/L		1		11/18/2023	07:00	ac	2340B	11/18/2023	15:25	ac
Calcium	18	1	mg/L		1		11/18/2023	07:00	ac	EPA 200.7	11/18/2023	15:25	ac
Magnesium	14	1	mg/L		1		11/18/2023	07:00	ac	EPA 200.7	11/18/2023	15:25	ac
Potassium	3	1	mg/L		1		11/18/2023	07:00	ac	EPA 200.7	11/18/2023	15:25	ac
Sodium	61	1	mg/L		1		11/18/2023	07:00	ac	EPA 200.7	11/18/2023	15:25	ac
Total Cations	4.8		meq/L		1		11/18/2023	07:00	ac	Calc.	11/18/2023	15:25	ac
Boron	0.2	0.1	mg/L		1		11/18/2023	07:00	ac	EPA 200.7	11/18/2023	15:25	ac
Copper	ND	10	ug/L		1	U	11/18/2023	07:00	ac	EPA 200.7	11/18/2023	15:25	ac
Iron	2050	30	ug/L		1		11/18/2023	07:00	ac	EPA 200.7	11/18/2023	15:25	ac
Manganese	230	10	ug/L		1		11/18/2023	07:00	ac	EPA 200.7	11/18/2023	15:25	ac
Zinc	ND	20	ug/L		1	U	11/18/2023	07:00	ac	EPA 200.7	11/18/2023	15:25	ac
SAR	2.6	0.1			1		11/18/2023	07:00	ac	Calc.	11/18/2023	15:25	ac
Total Alkalinity (as CaCO3)	80	10	mg/L		1		11/19/2023	20:37	amm	SM 4500-H+B	11/20/2023	10:39	amm
Hydroxide as OH	ND	10	mg/L		1	U	11/19/2023	20:37	amm	SM 4500-H+B	11/20/2023	10:39	amm
Carbonate as CO3	ND	10	mg/L		1	U	11/19/2023	20:37	amm	SM 4500-H+B	11/20/2023	10:39	amm
Bicarbonate as HCO3	100	10	mg/L		1		11/19/2023	20:37	amm	SM 4500-H+B	11/20/2023	10:39	amm
Sulfate	44.1	0.5	mg/L		1		11/16/2023	10:41	ldm	EPA 300.0	11/16/2023	19:33	ldm
Chloride	61	1	mg/L		1		11/16/2023	10:41	ldm	EPA 300.0	11/16/2023	19:33	ldm
Nitrate as NO3	55.9	0.4	mg/L		1		11/16/2023	10:41	ldm	EPA 300.0	11/16/2023	19:33	ldm
Nitrite as N	ND	0.1	mg/L		1	U	11/16/2023	10:41	ldm	EPA 300.0	11/16/2023	19:33	ldm
Nitrate + Nitrite as N	13.0	0.1	mg/L		1		11/16/2023	10:41	ldm	EPA 300.0	11/16/2023	19:33	ldm
Fluoride	ND	0.1	mg/L		1	U	11/16/2023	10:41	ldm	EPA 300.0	11/16/2023	19:33	ldm
Total Anions	5.2		meq/L		1		11/19/2023	20:37	amm	Calc.	11/20/2023	10:39	amm
pH	7.2		units		1	T	11/19/2023	20:37	amm	SM 4500-H+B	11/20/2023	10:39	amm
Specific Conductance	547	1	umhos/cm		1		11/19/2023	20:37	amm	SM 4500-H+B	11/20/2023	10:39	amm
Total Dissolved Solids	320	20	mg/L		1		11/17/2023	10:15	ctl	SM 2540 C	11/20/2023	10:00	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	11/16/2023	13:26	krh	SM 5540 C	11/16/2023	13:37	krh
Aggressiveness Index	10.8	1			1		11/19/2023	20:37	amm	Calc.	11/20/2023	10:39	amm
Langelier Index (20°C)	-1.1	1			1		11/19/2023	20:37	amm	Calc.	11/20/2023	10:39	amm
Nitrate Nitrogen	13.0	0.1	mg/L		1		11/16/2023	10:41	ldm	EPA 300.0	11/16/2023	19:33	ldm

DQF Flags Definition:

U Constituent results were non-detect.

T Exceeded method/regulatory-specific holding time.

November 27, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

Project

San Luis Obispo, CA 93401

7Q1 (FW10) Description:

Los Osos BMC-Fall Sampling

FW10

Lab No. : CC 2384090-001

Customer No.: 8000514

Sampled On : November 14, 2023 at 15:51

Sampled By: Iason Pitsillides

Received On: November 15, 2023 at 09:48

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	6.76		units		11/14/2023 15:51	4500HB	11/14/2023 15:51

November 15, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

Project

San Luis Obispo, CA 93401

20M2 (FW28) Description:

Los Osos BMC-Fall Sampling

Lab No. : CC 2383773-001

Customer No.: 8000514

Sampled On : October 26, 2023 at 10:17

Sampled By: Iason Pitsillides

Received On: October 26, 2023 at 11:13

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sample Analysis			
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	407	2.5	mg/L		1		11/14/2023	08:00	ac	2340B	11/14/2023	13:39	ac
Calcium	69	1	mg/L		1		11/14/2023	08:00	ac	EPA 200.7	11/14/2023	13:39	ac
Magnesium	57	1	mg/L		1		11/14/2023	08:00	ac	EPA 200.7	11/14/2023	13:39	ac
Potassium	2	1	mg/L		1		11/14/2023	08:00	ac	EPA 200.7	11/14/2023	13:39	ac
Sodium	40	1	mg/L		1		11/14/2023	08:00	ac	EPA 200.7	11/14/2023	13:39	ac
Total Cations	9.9		meq/L		1		11/14/2023	08:00	ac	Calc.	11/14/2023	13:39	ac
Boron	0.1	0.1	mg/L		1		11/14/2023	08:00	ac	EPA 200.7	11/14/2023	13:39	ac
Copper	ND	10	ug/L		1	U	11/14/2023	08:00	ac	EPA 200.7	11/14/2023	13:39	ac
Iron	ND	30	ug/L		1	U	11/14/2023	08:00	ac	EPA 200.7	11/14/2023	13:39	ac
Manganese	60	10	ug/L		1		11/14/2023	08:00	ac	EPA 200.7	11/14/2023	13:39	ac
Zinc	ND	20	ug/L		1	U	11/14/2023	08:00	ac	EPA 200.7	11/14/2023	13:39	ac
SAR	0.9	0.1			1		11/14/2023	08:00	ac	Calc.	11/14/2023	13:39	ac
Total Alkalinity (as CaCO3)	330	10	mg/L		1		10/30/2023	18:19	amm	SM 4500-H+B	10/31/2023	05:32	amm
Hydroxide as OH	ND	10	mg/L		1	U	10/30/2023	18:19	amm	SM 4500-H+B	10/31/2023	05:32	amm
Carbonate as CO3	ND	10	mg/L		1	U	10/30/2023	18:19	amm	SM 4500-H+B	10/31/2023	05:32	amm
Bicarbonate as HCO3	400	10	mg/L		1		10/30/2023	18:19	amm	SM 4500-H+B	10/31/2023	05:32	amm
Sulfate	81.9	0.5	mg/L		1		10/27/2023	14:58	ldm	EPA 300.0	10/27/2023	20:57	ldm
Chloride	71	1	mg/L		1		10/27/2023	14:58	ldm	EPA 300.0	10/27/2023	20:57	ldm
Nitrate as NO3	ND	0.4	mg/L		1	U	10/27/2023	14:58	ldm	EPA 300.0	10/27/2023	20:57	ldm
Nitrite as N	ND	0.1	mg/L		1	U	10/27/2023	14:58	ldm	EPA 300.0	10/27/2023	20:57	ldm
Nitrate + Nitrite as N	ND	0.1	mg/L		1	U	10/27/2023	14:58	ldm	EPA 300.0	10/27/2023	20:57	ldm
Fluoride	0.3	0.1	mg/L		1		10/27/2023	14:58	ldm	EPA 300.0	10/27/2023	20:57	ldm
Total Anions	10.3		meq/L		1		10/30/2023	18:19	amm	Calc.	10/31/2023	05:32	amm
pH	7.18		units		1		10/26/2023	10:17	ip	SM 4500-H+B	10/26/2023	10:17	ip
Specific Conductance	911	1	umhos/cm		1		10/30/2023	18:19	amm	SM 4500-H+B	10/31/2023	05:32	amm
Total Dissolved Solids	570	20	mg/L		1		10/30/2023	14:15	ctl	SM 2540 C	10/31/2023	10:00	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	10/28/2023	06:38	krh	SM 5540 C	10/28/2023	06:54	krh
Aggressiveness Index	11.9	1			1		10/26/2023	10:17	ip	Calc.	10/26/2023	10:17	ip
Langelier Index (20°C)	0.06	1			1		10/26/2023	10:17	ip	Calc.	10/26/2023	10:17	ip
Nitrate Nitrogen	ND	0.1	mg/L		1	U	10/27/2023	14:58	ldm	EPA 300.0	10/27/2023	20:57	ldm

DQF Flags Definition:

U Constituent results were non-detect.

November 15, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

Project

San Luis Obispo, CA 93401

Description: 20M2 (FW28)

Sample Results - Field Test

Los Osos BMC-Fall Sampling

Lab No. : CC 2383773-001

Customer No.: 8000514

Sampled On : October 26, 2023 at 10:17

Sampled By: Iason Pitsillides

Received On: October 26, 2023 at 11:13

Matrix : Ground Water

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.18		units		10/26/2023 10:17	4500HB	10/26/2023 10:17

ND=Non-Detected, RL=Reporting Level.

FAX: (559)734-8435 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

Description: 13F4 (UA3-Skyline)-GSWC

Fall BMC GSWC **Project**

Lab No. : CC 2383571-001

Customer No.: 8000514

Sampled On: October 10, 2023 at 09:45

Sampled By : Jerome Dengate

Received On: October 10, 2023 at 10:38

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sample Analysis			
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	125	2.5	mg/L		1		10/17/2023	13:00	ac	2340B	10/18/2023	14:48	ac
Calcium	22	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:48	ac
Magnesium	17	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:48	ac
Potassium	2	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:48	ac
Sodium	52	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:48	ac
Total Cations	4.8		meq/L		1		10/17/2023	13:00	ac	Calc.	10/18/2023	14:48	ac
Boron	ND	0.1	mg/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:48	ac
Copper	ND	10	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:48	ac
Iron	ND	30	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:48	ac
Manganese	ND	10	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:48	ac
Zinc	ND	20	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:48	ac
SAR	2.0	0.1			1		10/17/2023	13:00	ac	Calc.	10/18/2023	14:48	ac
Total Alkalinity (as CaCO3)	60	10	mg/L		1		10/16/2023	15:10	amm	SM 4500-H+B	10/16/2023	23:29	amm
Hydroxide as OH	ND	10	mg/L		1	U	10/16/2023	15:10	amm	SM 4500-H+B	10/16/2023	23:29	amm
Carbonate as CO3	ND	10	mg/L		1	U	10/16/2023	15:10	amm	SM 4500-H+B	10/16/2023	23:29	amm
Bicarbonate as HCO3	80	10	mg/L		1		10/16/2023	15:10	amm	SM 4500-H+B	10/16/2023	23:29	amm
Sulfate	22.3	0.5	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	03:49	ldm
Chloride	77	1	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	03:49	ldm
Nitrate as NO3	80.1	0.4	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	03:49	ldm
Nitrite as N	ND	0.1	mg/L		1	U	10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	03:49	ldm
Nitrate + Nitrite as N	18.0	0.1	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	03:49	ldm
Fluoride	ND	0.1	mg/L		1	U	10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	03:49	ldm
Total Anions	5.2		meq/L		1		10/16/2023	15:10	amm	Calc.	10/16/2023	23:29	amm
pH	7.45		units		1		10/10/2023	09:45	tc	SM 4500-H+B	10/10/2023	09:45	tc
Specific Conductance	569	1	umhos/cm		1		10/16/2023	15:10	amm	SM 4500-H+B	10/16/2023	23:29	amm
Total Dissolved Solids	390	20	mg/L		1		10/13/2023	11:00	ctl	SM 2540 C	10/16/2023	11:00	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	10/11/2023	16:45	krh	SM 5540 C	10/11/2023	17:02	krh
Aggressiveness Index	11.0	1			1		10/10/2023	09:45	tc	Calc.	10/10/2023	09:45	tc
Langelier Index (20°C)	-0.9	1			1		10/10/2023	09:45	tc	Calc.	10/10/2023	09:45	tc
Nitrate Nitrogen	18.0	0.1	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	03:49	ldm

DQF Flags Definition:

U Constituent results were non-detect.

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401 UA3

13F4 (UA3-Skyline)-GSWC Description:

Fall BMC GSWC **Project**

Lab No. : CC 2383571-001

Customer No.: 8000514

Sampled On: October 10, 2023 at 09:45

Sampled By : Jerome Dengate

Received On: October 10, 2023 at 10:38

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.45		units		10/10/2023 09:45	4500HB	10/10/2023 09:45
Conductivity	.560		mmhos/cm		10/10/2023 09:45	2510B	10/10/2023 09:45
Temperature	65.5		°F		10/10/2023 09:45	2550B	10/10/2023 09:45

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

UA9

18K3 (UA9-Los Olivos #3)GSWC Description:

Fall BMC GSWC **Project**

Lab No. : CC 2383571-002

Customer No.: 8000514

Sampled On : October 10, 2023 at 08:35

Sampled By : Jerome Dengate

Received On: October 10, 2023 at 10:38

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sar	nple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	93.4	2.5	mg/L		1		10/17/2023	13:00	ac	2340B	10/18/2023	14:54	ac
Calcium	16	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:54	ac
Magnesium	13	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:54	ac
Potassium	1	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:54	ac
Sodium	28	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:54	ac
Total Cations	3.1		meq/L		1		10/17/2023	13:00	ac	Calc.	10/18/2023	14:54	ac
Boron	ND	0.1	mg/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:54	ac
Copper	ND	10	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:54	ac
Iron	ND	30	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:54	ac
Manganese	ND	10	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:54	ac
Zinc	ND	20	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:54	ac
SAR	1.3	0.1			1		10/17/2023	13:00	ac	Calc.	10/18/2023	14:54	ac
Total Alkalinity (as CaCO3)	50	10	mg/L		1		10/16/2023	15:10	amm	SM 4500-H+B	10/16/2023	18:17	amm
Hydroxide as OH	ND	10	mg/L		1	U	10/16/2023	15:10	amm	SM 4500-H+B	10/16/2023	18:17	amm
Carbonate as CO3	ND	10	mg/L		1	U	10/16/2023	15:10	amm	SM 4500-H+B	10/16/2023	18:17	amm
Bicarbonate as HCO3	60	10	mg/L		1		10/16/2023	15:10	amm	SM 4500-H+B	10/16/2023	18:17	amm
Sulfate	8.6	0.5	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	01:02	ldm
Chloride	45	1	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	01:02	ldm
Nitrate as NO3	42.5	0.4	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	01:02	ldm
Nitrite as N	ND	0.1	mg/L		1	U	10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	01:02	ldm
Nitrate + Nitrite as N	9.6	0.1	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	01:02	ldm
Fluoride	ND	0.1	mg/L		1	U	10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	01:02	ldm
Total Anions	3.1		meq/L		1		10/16/2023	15:10	amm	Calc.	10/16/2023	18:17	amm
pH	7.48		units		1		10/10/2023	08:35	tc	SM 4500-H+B	10/10/2023	08:35	tc
Specific Conductance	349	1	umhos/cm		1		10/16/2023	15:10	amm	SM 4500-H+B	10/16/2023	18:17	amm
Total Dissolved Solids	230	20	mg/L		1		10/13/2023	11:05	ctl	SM 2540 C	10/16/2023	11:00	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	10/11/2023	16:45	krh	SM 5540 C	10/11/2023	17:02	krh
Aggressiveness Index	10.8	1			1		10/10/2023	08:35	tc	Calc.	10/10/2023	08:35	tc
Langelier Index (20°C)	-1.0	1			1		10/10/2023	08:35	tc	Calc.	10/10/2023	08:35	tc
Nitrate Nitrogen	9.6	0.1	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	01:02	ldm

DQF Flags Definition:

U Constituent results were non-detect.

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

18K3 (UA9-Los Olivos #3)GSWC Description:

Fall BMC GSWC **Project**

Lab No. : CC 2383571-002

Customer No.: 8000514

Sampled On : October 10, 2023 at 08:35

Sampled By : Jerome Dengate

Received On: October 10, 2023 at 10:38

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.48		units		10/10/2023 08:35	4500HB	10/10/2023 08:35
Conductivity	.390		mmhos/cm		10/10/2023 08:35	2510B	10/10/2023 08:35
Temperature	66		°F		10/10/2023 08:35	2550B	10/10/2023 08:35

October 20, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane

Suite 110

San Luis Obispo, CA 93401

17E10 (VA13) Description: **Project**

UA13

Los Osos BMC Monitoring

Lab No. : CC 2383557-001

Customer No.: 8000514

Sampled On: October 9, 2023 at 09:58

Sampled By: Iason Pitsillides

Received On: October 9, 2023 at 14:13

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sar	nple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	145	2.5	mg/L		1	hl	10/17/2023	07:45	ejc	2340B	10/18/2023	12:35	ac
Calcium	22	1	mg/L		1	h	10/17/2023	07:45	ejc	EPA 200.7	10/18/2023	12:35	ac
Magnesium	22	1	mg/L		1	hl	10/17/2023	07:45	ejc	EPA 200.7	10/18/2023	12:35	ac
Potassium	1	1	mg/L		1		10/17/2023	07:45	ejc	EPA 200.7	10/18/2023	12:35	ac
Sodium	38	1	mg/L		1		10/17/2023	07:45	ejc	EPA 200.7	10/18/2023	12:35	ac
Total Cations	4.6		meq/L		1	hl	10/17/2023	07:45	ejc	Calc.	10/18/2023	12:35	ac
Boron	0.05	0.05	mg/L		1	1	10/17/2023	07:45	ejc	EPA 200.7	10/18/2023	12:35	ac
Copper	ND	10	ug/L		1	U	10/17/2023	07:45	ejc	EPA 200.7	10/18/2023	12:35	ac
Iron	ND	50	ug/L		1	Ul	10/17/2023	07:45	ejc	EPA 200.7	10/18/2023	12:35	ac
Manganese	ND	10	ug/L		1	Ul	10/17/2023	07:45	ejc	EPA 200.7	10/18/2023	12:35	ac
Zinc	ND	20	ug/L		1	Ul	10/17/2023	07:45	ejc	EPA 200.7	10/18/2023	12:35	ac
SAR	1.4	0.1			1	hl	10/17/2023	07:45	ejc	Calc.	10/18/2023	12:35	ac
Total Alkalinity (as CaCO3)	80	10	mg/L		1		10/11/2023	18:16	amm	SM 4500-H+B	10/12/2023	02:47	amm
Hydroxide as OH	ND	10	mg/L		1	U	10/11/2023	18:16	amm	SM 4500-H+B	10/12/2023	02:47	amm
Carbonate as CO3	ND	10	mg/L		1	U	10/11/2023	18:16	amm	SM 4500-H+B	10/12/2023	02:47	amm
Bicarbonate as HCO3	100	10	mg/L		1		10/11/2023	18:16	amm	SM 4500-H+B	10/12/2023	02:47	amm
Sulfate	25.0	0.5	mg/L		1		10/10/2023	10:54	ldm	EPA 300.0	10/10/2023	21:20	ldm
Chloride	58	1	mg/L		1		10/10/2023	10:54	ldm	EPA 300.0	10/10/2023	21:20	ldm
Nitrate as NO3	66.4	0.4	mg/L		1		10/10/2023	10:54	ldm	EPA 300.0	10/10/2023	21:20	ldm
Nitrite as N	ND	0.1	mg/L		1	U	10/10/2023	10:54	ldm	EPA 300.0	10/10/2023	21:20	ldm
Nitrate + Nitrite as N	15.0	0.1	mg/L		1		10/10/2023	10:54	ldm	EPA 300.0	10/10/2023	21:20	ldm
Fluoride	ND	0.1	mg/L		1	U	10/10/2023	10:54	ldm	EPA 300.0	10/10/2023	21:20	ldm
Total Anions	4.9		meq/L		1		10/11/2023	18:16	amm	Calc.	10/12/2023	02:47	amm
pH	6.94		units		1	T	10/11/2023	18:16	amm	SM 4500-H+B	10/12/2023	02:47	amm
Specific Conductance	526	1	umhos/cm		1		10/11/2023	18:16	amm	SM 4500-H+B	10/12/2023	02:47	amm
Total Dissolved Solids	370	20	mg/L		1		10/12/2023	10:50	ctl	SM 2540 C	10/13/2023	10:00	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	10/10/2023	16:12	krh	SM 5540 C	10/10/2023	16:17	krh
Aggressiveness Index	10.6	1			1		10/11/2023	18:16	amm	Calc.	10/12/2023	02:47	amm
Langelier Index (20°C)	-1.3	1			1	h	10/11/2023	18:16	amm	Calc.	10/12/2023	02:47	amm
Nitrate Nitrogen	15.0	0.1	mg/L		1		10/10/2023	10:54	ldm	EPA 300.0	10/10/2023	21:20	ldm

DQF Flags Definition:

- h The MS/MSD did not meet QC criteria.
- 1 The MS/MSD did not meet QC criteria.
- Constituent results were non-detect.
- T Exceeded method/regulatory-specific holding time.

ND=Non-Detected, RL=Reporting Level, Dil.=Dilution

Section: Sample Results Page 3 of 11 Page 3 of 11 October 20, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

Description: 17E10 (VA13)

Los Osos BMC Monitoring **Project**

Lab No. : CC 2383557-001

Customer No.: 8000514

Sampled On: October 9, 2023 at 09:58

Sampled By: Iason Pitsillides

Received On: October 9, 2023 at 14:13

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	8.04		units		10/09/2023 09:58	4500HB	10/09/2023 09:58

October 19, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane

Suite 110

Project

San Luis Obispo, CA 93401

13N (LA8) Description:

Los Osos BMC Monitoring

Lab No. : CC 2383501-001

Customer No.: 8000514

Sampled On: October 4, 2023 at 13:14

Sampled By: Iason Pitsillides

Received On: October 4, 2023 at 14:33

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sar	nple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	108	2.5	mg/L		1		10/06/2023	12:00	ac	2340B	10/06/2023	14:41	ac
Calcium	17	1	mg/L		1		10/06/2023	12:00	ac	EPA 200.7	10/06/2023	14:41	ac
Magnesium	16	1	mg/L		1		10/06/2023	12:00	ac	EPA 200.7	10/06/2023	14:41	ac
Potassium	2	1	mg/L		1		10/06/2023	12:00	ac	EPA 200.7	10/06/2023	14:41	ac
Sodium	40	1	mg/L		1		10/06/2023	12:00	ac	EPA 200.7	10/06/2023	14:41	ac
Total Cations	4.0		meq/L		1		10/06/2023	12:00	ac	Calc.	10/06/2023	14:41	ac
Boron	ND	0.1	mg/L		1	U	10/06/2023	12:00	ac	EPA 200.7	10/06/2023	14:41	ac
Copper	ND	10	ug/L		1	U	10/06/2023	12:00	ac	EPA 200.7	10/06/2023	14:41	ac
Iron	ND	30	ug/L		1	U	10/06/2023	12:00	ac	EPA 200.7	10/06/2023	14:41	ac
Manganese	ND	10	ug/L		1	U	10/06/2023	12:00	ac	EPA 200.7	10/06/2023	14:41	ac
Zinc	ND	20	ug/L		1	U	10/06/2023	12:00	ac	EPA 200.7	10/06/2023	14:41	ac
SAR	1.7	0.1			1		10/06/2023	12:00	ac	Calc.	10/06/2023	14:41	ac
Total Alkalinity (as CaCO3)	50	10	mg/L		1		10/09/2023	11:41	amm	SM 4500-H+B	10/10/2023	00:10	amm
Hydroxide as OH	ND	10	mg/L		1	U	10/09/2023	11:41	amm	SM 4500-H+B	10/10/2023	00:10	amm
Carbonate as CO3	ND	10	mg/L		1	U	10/09/2023	11:41	amm	SM 4500-H+B	10/10/2023	00:10	amm
Bicarbonate as HCO3	60	10	mg/L		1		10/09/2023	11:41	amm	SM 4500-H+B	10/10/2023	00:10	amm
Sulfate	13.1	0.5	mg/L		1		10/05/2023	16:00	ldm	EPA 300.0	10/06/2023	10:39	ldm
Chloride	81	1	mg/L		1		10/05/2023	16:00	ldm	EPA 300.0	10/06/2023	10:39	ldm
Nitrate as NO3	32.4	0.4	mg/L		1		10/05/2023	16:00	ldm	EPA 300.0	10/06/2023	10:39	ldm
Nitrite as N	ND	0.1	mg/L		1	U	10/05/2023	16:00	ldm	EPA 300.0	10/06/2023	10:39	ldm
Nitrate + Nitrite as N	7.3	0.1	mg/L		1		10/05/2023	16:00	ldm	EPA 300.0	10/06/2023	10:39	ldm
Fluoride	ND	0.1	mg/L		1	U	10/05/2023	16:00	ldm	EPA 300.0	10/06/2023	10:39	ldm
Total Anions	4.1		meq/L		1		10/09/2023	11:41	amm	Calc.	10/10/2023	00:10	amm
pH	7.59		units		1		10/04/2023	13:14	ip	SM 4500-H+B	10/04/2023	13:14	ip
Specific Conductance	455	1	umhos/cm		1		10/09/2023	11:41	amm	SM 4500-H+B	10/10/2023	00:10	amm
Total Dissolved Solids	310	20	mg/L		1	I	10/06/2023	12:30	ctl	SM 2540 C	10/09/2023	11:00	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	10/05/2023	19:13	krh	SM 5540 C	10/05/2023	20:19	krh
Aggressiveness Index	10.9	1			1		10/04/2023	13:14	ip	Calc.	10/04/2023	13:14	ip
Langelier Index (20°C)	-0.9	1			1	I	10/04/2023	13:14	ip	Calc.	10/04/2023	13:14	ip
Nitrate Nitrogen	7.3	0.1	mg/L		1		10/05/2023	16:00	ldm	EPA 300.0	10/06/2023	10:39	ldm

DQF Flags Definition:

U Constituent results were non-detect.

I The RPD for the laboratory duplicate exceeded laboratory criteria.

ND=Non-Detected, RL=Reporting Level, Dil.=Dilution

CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810

October 19, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

13N (LA8) LA8 Description:

Los Osos BMC Monitoring **Project**

Lab No. : CC 2383501-001

Customer No.: 8000514

Sampled On: October 4, 2023 at 13:14

Sampled By: Iason Pitsillides

Received On: October 4, 2023 at 14:33

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.59		units		10/04/2023 13:14	4500HB	10/04/2023 13:14

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

LA9

24C1 (LA9-Cabrillo)-GSWC Description:

Fall BMC GSWC **Project**

Lab No. : CC 2383571-003

Customer No.: 8000514

Sampled On: October 10, 2023 at 09:25

Sampled By : Jerome Dengate

Received On: October 10, 2023 at 10:38

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	· · · · · · · · · · · · · · · · · · ·		sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	128	2.5	mg/L		1		10/17/2023	13:00	ac	2340B	10/18/2023	15:01	ac
Calcium	20	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:01	ac
Magnesium	19	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:01	ac
Potassium	2	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:01	ac
Sodium	47	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:01	ac
Total Cations	4.7		meq/L		1		10/17/2023	13:00	ac	Calc.	10/18/2023	15:01	ac
Boron	ND	0.1	mg/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:01	ac
Copper	ND	10	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:01	ac
Iron	ND	30	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:01	ac
Manganese	ND	10	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:01	ac
Zinc	ND	20	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:01	ac
SAR	1.8	0.1			1		10/17/2023	13:00	ac	Calc.	10/18/2023	15:01	ac
Total Alkalinity (as CaCO3)	60	10	mg/L		1		10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	01:34	amm
Hydroxide as OH	ND	10	mg/L		1	U	10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	01:34	amm
Carbonate as CO3	ND	10	mg/L		1	U	10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	01:34	amm
Bicarbonate as HCO3	70	10	mg/L		1		10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	01:34	amm
Sulfate	17.4	0.5	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	04:52	ldm
Chloride	96	2*	mg/L		2		10/24/2023	14:43	ldm	EPA 300.0	10/24/2023	21:04	ldm
Nitrate as NO3	30.2	0.4	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	04:52	ldm
Nitrite as N	ND	0.1	mg/L		1	U	10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	04:52	ldm
Nitrate + Nitrite as N	6.8	0.1	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	04:52	ldm
Fluoride	ND	0.1	mg/L		1	U	10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	04:52	ldm
Total Anions	4.7		meq/L		1		10/16/2023	15:10	amm	Calc.	10/17/2023	01:34	amm
pH	7.58		units		1		10/10/2023	09:25	tc	SM 4500-H+B	10/10/2023	09:25	tc
Specific Conductance	545	1	umhos/cm		1		10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	01:34	amm
Total Dissolved Solids	380	20	mg/L		1		10/13/2023	11:00	ctl	SM 2540 C	10/16/2023	11:00	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	10/11/2023	16:45	krh	SM 5540 C	10/11/2023	17:02	krh
Aggressiveness Index	11.1	1			1		10/10/2023	09:25	tc	Calc.	10/10/2023	09:25	tc
Langelier Index (20°C)	-0.8	1			1		10/10/2023	09:25	tc	Calc.	10/10/2023	09:25	tc
Nitrate Nitrogen	6.8	0.1	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	04:52	ldm

DQF Flags Definition:

U Constituent results were non-detect.

ND=Non-Detected, RL=Reporting Level * RL adjusted for dilution, Dil.=Dilution

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane

Suite 110

San Luis Obispo, CA 93401

24C1 (LA9-Cabrillo)-GSWC Description:

Fall BMC GSWC **Project**

Lab No. : CC 2383571-003

Customer No.: 8000514

Sampled On: October 10, 2023 at 09:25

Sampled By : Jerome Dengate

Received On: October 10, 2023 at 10:38

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.58		units		10/10/2023 09:25	4500HB	10/10/2023 09:25
Conductivity	.590		mmhos/cm		10/10/2023 09:25	2510B	10/10/2023 09:25
Temperature	65.7		°F		10/10/2023 09:25	2550B	10/10/2023 09:25

ND=Non-Detected, RL=Reporting Level. * RL adjusted for dilution

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

13J1 (LA10-Rosina)-GSWC Description:

Fall BMC GSWC **Project**

Lab No. : CC 2383571-004

Customer No.: 8000514

Sampled On: October 10, 2023 at 09:35

Sampled By : Jerome Dengate

Received On: October 10, 2023 at 10:38

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion			sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	277	2.5	mg/L		1		10/17/2023	13:00	ac	2340B	10/18/2023	15:07	ac
Calcium	45	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:07	ac
Magnesium	40	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:07	ac
Potassium	2	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:07	ac
Sodium	35	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:07	ac
Total Cations	7.1		meq/L		1		10/17/2023	13:00	ac	Calc.	10/18/2023	15:07	ac
Boron	ND	0.1	mg/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:07	ac
Copper	ND	10	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:07	ac
Iron	240	30	ug/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:07	ac
Manganese	ND	10	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:07	ac
Zinc	ND	20	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:07	ac
SAR	0.9	0.1			1		10/17/2023	13:00	ac	Calc.	10/18/2023	15:07	ac
Total Alkalinity (as CaCO3)	70	10	mg/L		1		10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	02:24	amm
Hydroxide as OH	ND	10	mg/L		1	U	10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	02:24	amm
Carbonate as CO3	ND	10	mg/L		1	U	10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	02:24	amm
Bicarbonate as HCO3	80	10	mg/L		1		10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	02:24	amm
Sulfate	13.2	0.5	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	02:47	ldm
Chloride	180	4*	mg/L		4		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	15:16	ldm
Nitrate as NO3	14.0	0.4	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	02:47	ldm
Nitrite as N	ND	0.1	mg/L		1	U	10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	02:47	ldm
Nitrate + Nitrite as N	3.2	0.1	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	02:47	ldm
Fluoride	ND	0.1	mg/L		1	U	10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	02:47	ldm
Total Anions	6.9		meq/L		1		10/16/2023	15:10	amm	Calc.	10/17/2023	02:24	amm
pH	7.58		units		1		10/10/2023	09:35	tc	SM 4500-H+B	10/10/2023	09:35	tc
Specific Conductance	805	1	umhos/cm		1		10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	02:24	amm
Total Dissolved Solids	610	20	mg/L		1		10/13/2023	11:00	ctl	SM 2540 C	10/16/2023	11:00	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	10/11/2023	16:45	krh	SM 5540 C	10/11/2023	17:02	krh
Aggressiveness Index	11.5	1			1		10/10/2023	09:35	tc	Calc.	10/10/2023	09:35	tc
Langelier Index (20°C)	-0.4	1			1		10/10/2023	09:35	tc	Calc.	10/10/2023	09:35	tc
Nitrate Nitrogen	3.2	0.1	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	02:47	ldm

DQF Flags Definition:

U Constituent results were non-detect.

ND=Non-Detected, RL=Reporting Level * RL adjusted for dilution, Dil.=Dilution

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

LA10

13J1 (LA10-Rosina)-GSWC Description:

Fall BMC GSWC **Project**

Lab No. : CC 2383571-004

Customer No.: 8000514

Sampled On: October 10, 2023 at 09:35

Sampled By : Jerome Dengate

Received On: October 10, 2023 at 10:38

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.58		units		10/10/2023 09:35	4500HB	10/10/2023 09:35
Conductivity	.810		mmhos/cm		10/10/2023 09:35	2510B	10/10/2023 09:35
Temperature	68		°F		10/10/2023 09:35	2550B	10/10/2023 09:35

ND=Non-Detected, RL=Reporting Level. * RL adjusted for dilution

FAX: (559)734-8435 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810 October 19, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

12JI (LA11) Description:

Los Osos BMC Monitoring **Project**

Lab No. : CC 2383501-002

Customer No.: 8000514

Sampled On: October 4, 2023 at 11:21

Sampled By: Iason Pitsillides

Received On: October 4, 2023 at 14:33

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sar	nple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	715	2.5	mg/L		1		10/06/2023	12:00	ac	2340B	10/06/2023	14:48	ac
Calcium	102	1	mg/L		1		10/06/2023	12:00	ac	EPA 200.7	10/06/2023	14:48	ac
Magnesium	112	1	mg/L		1		10/06/2023	12:00	ac	EPA 200.7	10/06/2023	14:48	ac
Potassium	5	1	mg/L		1		10/06/2023	12:00	ac	EPA 200.7	10/06/2023	14:48	ac
Sodium	93	1	mg/L		1		10/06/2023	12:00	ac	EPA 200.7	10/06/2023	14:48	ac
Total Cations	18.5		meq/L		1		10/06/2023	12:00	ac	Calc.	10/06/2023	14:48	ac
Boron	0.2	0.1	mg/L		1		10/06/2023	12:00	ac	EPA 200.7	10/06/2023	14:48	ac
Copper	ND	10	ug/L		1	U	10/06/2023	12:00	ac	EPA 200.7	10/06/2023	14:48	ac
Iron	170	30	ug/L		1		10/06/2023	12:00	ac	EPA 200.7	10/06/2023	14:48	ac
Manganese	50	10	ug/L		1		10/06/2023	12:00	ac	EPA 200.7	10/06/2023	14:48	ac
Zinc	ND	20	ug/L		1	U	10/06/2023	12:00	ac	EPA 200.7	10/06/2023	14:48	ac
SAR	1.5	0.1			1		10/06/2023	12:00	ac	Calc.	10/06/2023	14:48	ac
Total Alkalinity (as CaCO3)	280	10	mg/L		1		10/08/2023	17:46	amm	SM 4500-H+B	10/08/2023	19:50	amm
Hydroxide as OH	ND	10	mg/L		1	U	10/08/2023	17:46	amm	SM 4500-H+B	10/08/2023	19:50	amm
Carbonate as CO3	ND	10	mg/L		1	U	10/08/2023	17:46	amm	SM 4500-H+B	10/08/2023	19:50	amm
Bicarbonate as HCO3	340	10	mg/L		1		10/08/2023	17:46	amm	SM 4500-H+B	10/08/2023	19:50	amm
Sulfate	188	0.5	mg/L		1		10/05/2023	10:29	ldm	EPA 300.0	10/06/2023	04:43	ldm
Chloride	350	7*	mg/L		7		10/05/2023	10:29	ldm	EPA 300.0	10/06/2023	23:09	ldm
Nitrate as NO3	ND	0.4	mg/L		1	U	10/05/2023	10:29	ldm	EPA 300.0	10/06/2023	04:43	ldm
Nitrite as N	ND	0.1	mg/L		1	U	10/05/2023	10:29	ldm	EPA 300.0	10/06/2023	04:43	ldm
Nitrate + Nitrite as N	ND	0.1	mg/L		1	U	10/05/2023	10:29	ldm	EPA 300.0	10/06/2023	04:43	ldm
Fluoride	0.1	0.1	mg/L		1		10/05/2023	10:29	ldm	EPA 300.0	10/06/2023	04:43	ldm
Total Anions	19.4		meq/L		1		10/08/2023	17:46	amm	Calc.	10/08/2023	19:50	amm
pH	7.38		units		1		10/04/2023	11:21	ip	SM 4500-H+B	10/04/2023	11:21	ip
Specific Conductance	1910	1	umhos/cm		1		10/08/2023	17:46	amm	SM 4500-H+B	10/08/2023	19:50	amm
Total Dissolved Solids	1300	20	mg/L		1	I	10/06/2023	12:30	ctl	SM 2540 C	10/09/2023	11:00	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	10/05/2023	19:13	krh	SM 5540 C	10/05/2023	20:19	krh
Aggressiveness Index	12.2	1			1		10/04/2023	11:21	ip	Calc.	10/04/2023	11:21	ip
Langelier Index (20°C)	0.3	1			1	I	10/04/2023	11:21	ip	Calc.	10/04/2023	11:21	ip
Nitrate Nitrogen	ND	0.1	mg/L		1	U	10/05/2023	10:29	ldm	EPA 300.0	10/06/2023	04:43	ldm

DQF Flags Definition:

U Constituent results were non-detect.

ND=Non-Detected, RL=Reporting Level * RL adjusted for dilution, Dil.=Dilution

Section: Sample Results Page 4 of 9 Page 4 of 9

I The RPD for the laboratory duplicate exceeded laboratory criteria.

October 19, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

LA11 12JI (LA11) Description:

Los Osos BMC Monitoring **Project**

Lab No. : CC 2383501-002

Customer No.: 8000514

Sampled On: October 4, 2023 at 11:21

Sampled By: Iason Pitsillides

Received On: October 4, 2023 at 14:33

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.38		units		10/04/2023 11:21	4500HB	10/04/2023 11:21

ND=Non-Detected, RL=Reporting Level. * RL adjusted for dilution

CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810

October 26, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

7Q3 (LA12) Description:

Los Osos BMC Monitoring **Project**

Lab No. : CC 2383619-001

Customer No.: 8000514

Sampled On: October 11, 2023 at 09:05

Sampled By: Iason Pitsillides

Received On: October 11, 2023 at 14:40

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repa <u>r</u> a	tion	Sample Analysis		alysis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	298	2.5	mg/L		1		10/17/2023	13:00	ac	2340B	10/17/2023	16:07	ac
Calcium	47	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/17/2023	16:07	ac
Magnesium	44	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/17/2023	16:07	ac
Potassium	2	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/17/2023	16:07	ac
Sodium	53	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/17/2023	16:07	ac
Total Cations	8.3		meq/L		1		10/17/2023	13:00	ac	Calc.	10/17/2023	16:07	ac
Boron	0.2	0.1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/17/2023	16:07	ac
Copper	ND	10	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/17/2023	16:07	ac
Iron	260	30	ug/L		1		10/17/2023	13:00	ac	EPA 200.7	10/17/2023	16:07	ac
Manganese	60	10	ug/L		1		10/17/2023	13:00	ac	EPA 200.7	10/17/2023	16:07	ac
Zinc	ND	20	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/17/2023	16:07	ac
SAR	1.3	0.1			1		10/17/2023	13:00	ac	Calc.	10/17/2023	16:07	ac
Total Alkalinity (as CaCO3)	250	10	mg/L		1		10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	02:53	amm
Hydroxide as OH	ND	10	mg/L		1	U	10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	02:53	amm
Carbonate as CO3	ND	10	mg/L		1	U	10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	02:53	amm
Bicarbonate as HCO3	310	10	mg/L		1		10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	02:53	amm
Sulfate	52.1	0.5	mg/L		1		10/12/2023	15:26	ldm	EPA 300.0	10/13/2023	11:49	ldm
Chloride	95	1	mg/L		1		10/12/2023	15:26	ldm	EPA 300.0	10/13/2023	11:49	ldm
Nitrate as NO3	ND	0.4	mg/L		1	U	10/12/2023	15:26	ldm	EPA 300.0	10/13/2023	11:49	ldm
Nitrite as N	ND	0.1	mg/L		1	U	10/12/2023	15:26	ldm	EPA 300.0	10/13/2023	11:49	ldm
Nitrate + Nitrite as N	ND	0.1	mg/L		1	J	10/12/2023	15:26	ldm	EPA 300.0	10/13/2023	11:49	ldm
Fluoride	ND	0.1	mg/L		1	U	10/12/2023	15:26	ldm	EPA 300.0	10/13/2023	11:49	ldm
Total Anions	8.8		meq/L		1		10/16/2023	15:10	amm	Calc.	10/17/2023	02:53	amm
pH	7.41		units		1		10/11/2023	09:05	ip	SM 4500-H+B	10/11/2023	09:05	ip
Specific Conductance	849	1	umhos/cm		1		10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	02:53	amm
Total Dissolved Solids	520	20	mg/L		1		10/13/2023	13:30	ctl	SM 2540 C	10/16/2023	11:00	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	10/12/2023	16:34	krh	SM 5540 C	10/12/2023	16:34	krh
Aggressiveness Index	11.9	1			1		10/11/2023	09:05	ip	Calc.	10/11/2023	09:05	ip
Langelier Index (20°C)	0.009	1			1		10/11/2023	09:05	ip	Calc.	10/11/2023	09:05	ip
Nitrate Nitrogen	ND	0.1	mg/L		1	U	10/12/2023	15:26	ldm	EPA 300.0	10/13/2023	11:49	ldm

DQF Flags Definition:

Constituent results were non-detect.

J Reported value is estimated; detected at a concentration below the RL and above the laboratory MDL.

October 26, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

7Q3 (LA12) Description:

Los Osos BMC Monitoring **Project**

Lab No. : CC 2383619-001

Customer No.: 8000514

Sampled On: October 11, 2023 at 09:05

Sampled By: Iason Pitsillides

Received On: October 11, 2023 at 14:40

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.41		units		10/11/2023 09:05	4500HB	10/11/2023 09:05

Lab No.

Matrix

Customer No.: 8000514

Sampled By: Iason Pitsillides

: CC 2383619-002

Sampled On: October 11, 2023 at 13:36

Received On: October 11, 2023 at 14:40

: Ground Water

October 26, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

18F2 (KA13) Description:

LA13

Los Osos BMC Monitoring **Project**

Sample Results - Inorganic

Sample Results - Inorganic													
Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sai	nple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	168	2.5	mg/L		1		10/17/2023	13:00	ac	2340B	10/17/2023	16:14	ac
Calcium	23	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/17/2023	16:14	ac
Magnesium	27	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/17/2023	16:14	ac
Potassium	2	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/17/2023	16:14	ac
Sodium	70	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/17/2023	16:14	ac
Total Cations	6.5		meq/L		1		10/17/2023	13:00	ac	Calc.	10/17/2023	16:14	ac
Boron	ND	0.1	mg/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/17/2023	16:14	ac
Copper	ND	10	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/17/2023	16:14	ac
Iron	220	30	ug/L		1		10/17/2023	13:00	ac	EPA 200.7	10/17/2023	16:14	ac
Manganese	150	10	ug/L		1		10/17/2023	13:00	ac	EPA 200.7	10/17/2023	16:14	ac
Zinc	ND	20	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/17/2023	16:14	ac
SAR	2.3	0.1			1		10/17/2023	13:00	ac	Calc.	10/17/2023	16:14	ac
Total Alkalinity (as CaCO3)	230	10	mg/L		1		10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	02:42	amm
Hydroxide as OH	ND	10	mg/L		1	U	10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	02:42	amm
Carbonate as CO3	ND	10	mg/L		1	U	10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	02:42	amm
Bicarbonate as HCO3	280	10	mg/L		1		10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	02:42	amm
Sulfate	39.7	0.5	mg/L		1		10/12/2023	15:26	ldm	EPA 300.0	10/13/2023	12:10	ldm
Chloride	50	1	mg/L		1		10/12/2023	15:26	ldm	EPA 300.0	10/13/2023	12:10	ldm
Nitrate as NO3	ND	0.4	mg/L		1	U	10/12/2023	15:26	ldm	EPA 300.0	10/13/2023	12:10	ldm
Nitrite as N	ND	0.1	mg/L		1	U	10/12/2023	15:26	ldm	EPA 300.0	10/13/2023	12:10	ldm
Nitrate + Nitrite as N	ND	0.1	mg/L		1	U	10/12/2023	15:26	ldm	EPA 300.0	10/13/2023	12:10	ldm
Fluoride	0.1	0.1	mg/L		1		10/12/2023	15:26	ldm	EPA 300.0	10/13/2023	12:10	ldm
Total Anions	6.8		meq/L		1		10/16/2023	15:10	amm	Calc.	10/17/2023	02:42	amm
pH	7.73		units		1		10/11/2023	13:36	ip	SM 4500-H+B	10/11/2023	13:36	ip
Specific Conductance	656	1	umhos/cm		1		10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	02:42	amm
Total Dissolved Solids	400	20	mg/L		1		10/13/2023	13:30	ctl	SM 2540 C	10/16/2023	11:00	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	10/12/2023	16:34	krh	SM 5540 C	10/12/2023	16:34	krh
Aggressiveness Index	11.9	1			1		10/11/2023	13:36	ip	Calc.	10/11/2023	13:36	ip
Langelier Index (20°C)	-0.004	1			1		10/11/2023	13:36	ip	Calc.	10/11/2023	13:36	ip
Nitrate Nitrogen	ND	0.1	mg/L		1	U	10/12/2023	15:26	ldm	EPA 300.0	10/13/2023	12:10	ldm

DQF Flags Definition:

U Constituent results were non-detect.

October 26, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

Description: 18F2 (KA13)

Project Los Osos BMC Monitoring Lab No. : CC 2383619-002

Customer No.: 8000514

Sampled On: October 11, 2023 at 13:36

Sampled By: Iason Pitsillides

Received On: October 11, 2023 at 14:40

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.73		units		10/11/2023 13:36	4500HB	10/11/2023 13:36

ND=Non-Detected, RL=Reporting Level.

Page 5 of 8 Section: Sample Results Page 5 of 8

Corporate Offices & Laboratory

October 20, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

18L2 (LA-15) Description:

Los Osos BMC Monitoring

Project

Lab No. : CC 2383557-002

Customer No.: 8000514

Sampled On: October 9, 2023 at 11:50

Sampled By: Iason Pitsillides

Received On: October 9, 2023 at 14:13

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	n Sample Analysi		sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	331	2.5	mg/L		1		10/17/2023	13:00	ac	2340B	10/18/2023	14:02	ac
Calcium	55	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:02	ac
Magnesium	47	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:02	ac
Potassium	2	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:02	ac
Sodium	40	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:02	ac
Total Cations	8.4		meq/L		1		10/17/2023	13:00	ac	Calc.	10/18/2023	14:02	ac
Boron	ND	0.1	mg/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:02	ac
Copper	ND	10	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:02	ac
Iron	ND	30	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:02	ac
Manganese	ND	10	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:02	ac
Zinc	ND	20	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	14:02	ac
SAR	1.0	0.1			1		10/17/2023	13:00	ac	Calc.	10/18/2023	14:02	ac
Total Alkalinity (as CaCO3)	220	10	mg/L		1		10/11/2023	18:16	amm	SM 4500-H+B	10/12/2023	04:25	amm
Hydroxide as OH	ND	10	mg/L		1	U	10/11/2023	18:16	amm	SM 4500-H+B	10/12/2023	04:25	amm
Carbonate as CO3	ND	10	mg/L		1	U	10/11/2023	18:16	amm	SM 4500-H+B	10/12/2023	04:25	amm
Bicarbonate as HCO3	270	10	mg/L		1		10/11/2023	18:16	amm	SM 4500-H+B	10/12/2023	04:25	amm
Sulfate	31.1	0.5	mg/L		1		10/10/2023	10:54	ldm	EPA 300.0	10/10/2023	21:41	ldm
Chloride	130	3*	mg/L		3		10/10/2023	10:54	ldm	EPA 300.0	10/11/2023	05:40	ldm
Nitrate as NO3	2.4	0.4	mg/L		1		10/10/2023	10:54	ldm	EPA 300.0	10/10/2023	21:41	ldm
Nitrite as N	ND	0.1	mg/L		1	U	10/10/2023	10:54	ldm	EPA 300.0	10/10/2023	21:41	ldm
Nitrate + Nitrite as N	0.5	0.1	mg/L		1		10/10/2023	10:54	ldm	EPA 300.0	10/10/2023	21:41	ldm
Fluoride	ND	0.1	mg/L		1	U	10/10/2023	10:54	ldm	EPA 300.0	10/10/2023	21:41	ldm
Total Anions	8.8		meq/L		1		10/11/2023	18:16	amm	Calc.	10/12/2023	04:25	amm
pH	7.57		units		1	T	10/11/2023	18:16	amm	SM 4500-H+B	10/12/2023	04:25	amm
Specific Conductance	898	1	umhos/cm		1		10/11/2023	18:16	amm	SM 4500-H+B	10/12/2023	04:25	amm
Total Dissolved Solids	570	20	mg/L		1		10/12/2023	10:50	ctl	SM 2540 C	10/13/2023	10:00	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	10/10/2023	16:12	krh	SM 5540 C	10/10/2023	16:17	krh
Aggressiveness Index	12.1	1			1		10/11/2023	18:16	amm	Calc.	10/12/2023	04:25	amm
Langelier Index (20°C)	0.2	1			1		10/11/2023	18:16	amm	Calc.	10/12/2023	04:25	amm
Nitrate Nitrogen	0.5	0.1	mg/L		1		10/10/2023	10:54	ldm	EPA 300.0	10/10/2023	21:41	ldm

DQF Flags Definition:

U Constituent results were non-detect.

T Exceeded method/regulatory-specific holding time.

ND=Non-Detected, RL=Reporting Level * RL adjusted for dilution, Dil.=Dilution

October 20, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

Description: 18L2 (LA-15)

Los Osos BMC Monitoring **Project**

Lab No. : CC 2383557-002

Customer No.: 8000514

Sampled On: October 9, 2023 at 11:50

Sampled By: Iason Pitsillides

Received On: October 9, 2023 at 14:13

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.37		units		10/09/2023 11:50	4500HB	10/09/2023 11:50

ND=Non-Detected, RL=Reporting Level. * RL adjusted for dilution

FAX: (559)734-8435 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810 October 26, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

18K8 (LA18) Description:

Project Los Osos BMC Monitoring Lab No. : CC 2383685-002

Customer No.: 8000514

Sampled On : October 17, 2023 at 12:52

Sampled By: Jim Raney / James C

Received On: October 17, 2023 at 14:23

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sar	nple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	264	2.5	mg/L		1		10/20/2023	09:00	ac	2340B	10/20/2023	14:37	ac
Calcium	53	1	mg/L		1		10/20/2023	09:00	ac	EPA 200.7	10/20/2023	14:37	ac
Magnesium	32	1	mg/L		1		10/20/2023	09:00	ac	EPA 200.7	10/20/2023	14:37	ac
Potassium	2	1	mg/L		1		10/20/2023	09:00	ac	EPA 200.7	10/20/2023	14:37	ac
Sodium	26	1	mg/L		1		10/20/2023	09:00	ac	EPA 200.7	10/20/2023	14:37	ac
Total Cations	6.5		meq/L		1		10/20/2023	09:00	ac	Calc.	10/20/2023	14:37	ac
Boron	ND	0.1	mg/L		1	U	10/20/2023	09:00	ac	EPA 200.7	10/20/2023	14:37	ac
Copper	ND	10	ug/L		1	U	10/20/2023	09:00	ac	EPA 200.7	10/20/2023	14:37	ac
Iron	ND	30	ug/L		1	U	10/20/2023	09:00	ac	EPA 200.7	10/20/2023	14:37	ac
Manganese	80	10	ug/L		1		10/20/2023	09:00	ac	EPA 200.7	10/20/2023	14:37	ac
Zinc	ND	20	ug/L		1	U	10/20/2023	09:00	ac	EPA 200.7	10/20/2023	14:37	ac
SAR	0.7	0.1			1		10/20/2023	09:00	ac	Calc.	10/20/2023	14:37	ac
Total Alkalinity (as CaCO3)	250	10	mg/L		1		10/23/2023	18:31	amm	SM 4500-H+B	10/23/2023	21:41	amm
Hydroxide as OH	ND	10	mg/L		1	U	10/23/2023	18:31	amm	SM 4500-H+B	10/23/2023	21:41	amm
Carbonate as CO3	ND	10	mg/L		1	U	10/23/2023	18:31	amm	SM 4500-H+B	10/23/2023	21:41	amm
Bicarbonate as HCO3	310	10	mg/L		1		10/23/2023	18:31	amm	SM 4500-H+B	10/23/2023	21:41	amm
Sulfate	37.7	0.5	mg/L		1		10/18/2023	10:20	ldm	EPA 300.0	10/18/2023	20:36	ldm
Chloride	31	1	mg/L		1		10/18/2023	10:20	ldm	EPA 300.0	10/18/2023	20:36	ldm
Nitrate as NO3	ND	0.4	mg/L		1	U	10/18/2023	10:20	ldm	EPA 300.0	10/18/2023	20:36	ldm
Nitrite as N	ND	0.1	mg/L		1	U	10/18/2023	10:20	ldm	EPA 300.0	10/18/2023	20:36	ldm
Nitrate + Nitrite as N	ND	0.1	mg/L		1	J	10/18/2023	10:20	ldm	EPA 300.0	10/18/2023	20:36	ldm
Fluoride	0.2	0.1	mg/L		1		10/18/2023	10:20	ldm	EPA 300.0	10/18/2023	20:36	ldm
Total Anions	6.8		meq/L		1		10/23/2023	18:31	amm	Calc.	10/23/2023	21:41	amm
pH	7.1		units		1		10/17/2023	12:52	j/j	SM 4500-H+B	10/17/2023	12:52	j/j
Specific Conductance	622	1	umhos/cm		1		10/23/2023	18:31	amm	SM 4500-H+B	10/23/2023	21:41	amm
Total Dissolved Solids	430	20	mg/L		1		10/18/2023	16:30	ctl	SM 2540 C	10/19/2023	11:20	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	10/18/2023	13:48	krh	SM 5540 C	10/18/2023	13:48	krh
Aggressiveness Index	11.6	1			1		10/17/2023	12:52	j/j	Calc.	10/17/2023	12:52	j/j
Langelier Index (20°C)	-0.2	1			1		10/17/2023	12:52	j/j	Calc.	10/17/2023	12:52	j/j
Nitrate Nitrogen	ND	0.1	mg/L		1	U	10/18/2023	10:20	ldm	EPA 300.0	10/18/2023	20:36	ldm

DQF Flags Definition:

Constituent results were non-detect.

J Reported value is estimated; detected at a concentration below the RL and above the laboratory MDL.

October 26, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

Project

San Luis Obispo, CA 93401

Description: 18K8 (LA18)

Los Osos BMC Monitoring

Lab No. : CC 2383685-002

Customer No.: 8000514

Sampled On : October 17, 2023 at 12:52

Sampled By: Jim Raney / James C

Received On: October 17, 2023 at 14:23

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.10		units		10/17/2023 12:52	4500HB	10/17/2023 12:52

ND=Non-Detected, RL=Reporting Level.

Page 5 of 9 Section: Sample Results Page 5 of 9

Corporate Offices & Laboratory

FAX: (805)783-2912 FAX: (559)734-8435 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

17N10 (LA20-South Bay #1) Description:

Fall BMC GSWC **Project**

Lab No. : CC 2383571-005

Customer No.: 8000514

Sampled On: October 10, 2023 at 09:00

Sampled By : Jerome Dengate

Received On: October 10, 2023 at 10:38

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	· · · · · · · · · · · · · · · · · · ·		sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	193	2.5	mg/L		1		10/17/2023	13:00	ac	2340B	10/18/2023	15:14	ac
Calcium	31	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:14	ac
Magnesium	28	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:14	ac
Potassium	2	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:14	ac
Sodium	36	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:14	ac
Total Cations	5.5		meq/L		1		10/17/2023	13:00	ac	Calc.	10/18/2023	15:14	ac
Boron	0.1	0.1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:14	ac
Copper	ND	10	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:14	ac
Iron	ND	30	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:14	ac
Manganese	10	10	ug/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:14	ac
Zinc	60	20	ug/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:14	ac
SAR	1.1	0.1			1		10/17/2023	13:00	ac	Calc.	10/18/2023	15:14	ac
Total Alkalinity (as CaCO3)	180	10	mg/L		1		10/16/2023	15:10	amm	SM 4500-H+B	10/16/2023	19:24	amm
Hydroxide as OH	ND	10	mg/L		1	U	10/16/2023	15:10	amm	SM 4500-H+B	10/16/2023	19:24	amm
Carbonate as CO3	ND	10	mg/L		1	U	10/16/2023	15:10	amm	SM 4500-H+B	10/16/2023	19:24	amm
Bicarbonate as HCO3	220	10	mg/L		1		10/16/2023	15:10	amm	SM 4500-H+B	10/16/2023	19:24	amm
Sulfate	23.4	0.5	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	05:13	ldm
Chloride	43	1	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	05:13	ldm
Nitrate as NO3	13.2	0.4	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	05:13	ldm
Nitrite as N	ND	0.1	mg/L		1	U	10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	05:13	ldm
Nitrate + Nitrite as N	3.0	0.1	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	05:13	ldm
Fluoride	0.1	0.1	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	05:13	ldm
Total Anions	5.5		meq/L		1		10/16/2023	15:10	amm	Calc.	10/16/2023	19:24	amm
pH	7.69		units		1		10/10/2023	09:00	tc	SM 4500-H+B	10/10/2023	09:00	tc
Specific Conductance	538	1	umhos/cm		1		10/16/2023	15:10	amm	SM 4500-H+B	10/16/2023	19:24	amm
Total Dissolved Solids	320	20	mg/L		1		10/13/2023	11:00	ctl	SM 2540 C	10/16/2023	11:00	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	10/11/2023	16:45	krh	SM 5540 C	10/11/2023	17:02	krh
Aggressiveness Index	11.8	1			1		10/10/2023	09:00	tc	Calc.	10/10/2023	09:00	tc
Langelier Index (20°C)	-0.009	1			1		10/10/2023	09:00	tc	Calc.	10/10/2023	09:00	tc
Nitrate Nitrogen	3.0	0.1	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	05:13	ldm

DQF Flags Definition:

U Constituent results were non-detect.

ND=Non-Detected, RL=Reporting Level * RL adjusted for dilution, Dil.=Dilution

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401 LA20

17N10 (LA20-South Bay #1) Description:

Fall BMC GSWC **Project**

Lab No. : CC 2383571-005

Customer No.: 8000514

Sampled On: October 10, 2023 at 09:00

Sampled By : Jerome Dengate

Received On: October 10, 2023 at 10:38

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.64		units		10/10/2023 09:00	4500HB	10/10/2023 09:00
Conductivity	.586		mmhos/cm		10/10/2023 09:00	2510B	10/10/2023 09:00
Temperature	68.4		°F		10/10/2023 09:00	2550B	10/10/2023 09:00

ND=Non-Detected, RL=Reporting Level. * RL adjusted for dilution

October 26, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane

Suite 110

Project

San Luis Obispo, CA 93401

17E8 (LA22) Description:

Los Osos BMC Monitoring

Lab No. : CC 2383685-001

Customer No.: 8000514

Sampled On : October 17, 2023 at 15:10

Sampled By: Jim Raney / James C

Received On: October 17, 2023 at 14:23

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF				sis			
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	169	2.5	mg/L		1		10/20/2023	09:00	ac	2340B	10/20/2023	14:30	ac
Calcium	25	1	mg/L		1		10/20/2023	09:00	ac	EPA 200.7	10/20/2023	14:30	ac
Magnesium	26	1	mg/L		1		10/20/2023	09:00	ac	EPA 200.7	10/20/2023	14:30	ac
Potassium	2	1	mg/L		1		10/20/2023	09:00	ac	EPA 200.7	10/20/2023	14:30	ac
Sodium	28	1	mg/L		1		10/20/2023	09:00	ac	EPA 200.7	10/20/2023	14:30	ac
Total Cations	4.7		meq/L		1		10/20/2023	09:00	ac	Calc.	10/20/2023	14:30	ac
Boron	ND	0.1	mg/L		1	U	10/20/2023	09:00	ac	EPA 200.7	10/20/2023	14:30	ac
Copper	ND	10	ug/L		1	U	10/20/2023	09:00	ac	EPA 200.7	10/20/2023	14:30	ac
Iron	ND	30	ug/L		1	U	10/20/2023	09:00	ac	EPA 200.7	10/20/2023	14:30	ac
Manganese	ND	10	ug/L		1	U	10/20/2023	09:00	ac	EPA 200.7	10/20/2023	14:30	ac
Zinc	ND	20	ug/L		1	U	10/20/2023	09:00	ac	EPA 200.7	10/20/2023	14:30	ac
SAR	0.9	0.1			1		10/20/2023	09:00	ac	Calc.	10/20/2023	14:30	ac
Total Alkalinity (as CaCO3)	140	10	mg/L		1		10/24/2023	19:11	amm	SM 4500-H+B	10/25/2023	10:11	amm
Hydroxide as OH	ND	10	mg/L		1	U	10/24/2023	19:11	amm	SM 4500-H+B	10/25/2023	10:11	amm
Carbonate as CO3	ND	10	mg/L		1	U	10/24/2023	19:11	amm	SM 4500-H+B	10/25/2023	10:11	amm
Bicarbonate as HCO3	170	10	mg/L		1		10/24/2023	19:11	amm	SM 4500-H+B	10/25/2023	10:11	amm
Sulfate	13.7	0.5	mg/L		1		10/18/2023	12:55	ldm	EPA 300.0	10/19/2023	00:26	ldm
Chloride	45	1	mg/L		1	1	10/18/2023	12:55	ldm	EPA 300.0	10/19/2023	00:26	ldm
Nitrate as NO3	27.0	0.4	mg/L		1		10/18/2023	12:55	ldm	EPA 300.0	10/19/2023	00:26	ldm
Nitrite as N	ND	0.1	mg/L		1	U	10/18/2023	12:55	ldm	EPA 300.0	10/19/2023	00:26	ldm
Nitrate + Nitrite as N	6.1	0.1	mg/L		1		10/18/2023	12:55	ldm	EPA 300.0	10/19/2023	00:26	ldm
Fluoride	ND	0.1	mg/L		1	U	10/18/2023	12:55	ldm	EPA 300.0	10/19/2023	00:26	ldm
Total Anions	4.8		meq/L		1	1	10/24/2023	19:11	amm	Calc.	10/25/2023	10:11	amm
pH	7.0		units		1		10/17/2023	15:10	j/j	SM 4500-H+B	10/17/2023	15:10	j/j
Specific Conductance	465	1	umhos/cm		1		10/24/2023	19:11	amm	SM 4500-H+B	10/25/2023	10:11	amm
Total Dissolved Solids	290	20	mg/L		1		10/18/2023	16:30	ctl	SM 2540 C	10/19/2023	11:20	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	10/18/2023	13:48	krh	SM 5540 C	10/18/2023	13:48	krh
Aggressiveness Index	10.9	1			1		10/17/2023	15:10	j/j	Calc.	10/17/2023	15:10	j/j
Langelier Index (20°C)	-0.9	1			1		10/17/2023	15:10	j/j	Calc.	10/17/2023	15:10	j/j
Nitrate Nitrogen	6.1	0.1	mg/L		1		10/18/2023	12:55	ldm	EPA 300.0	10/19/2023	00:26	ldm

DQF Flags Definition:

U Constituent results were non-detect.

l The MS/MSD did not meet QC criteria.

ND=Non-Detected, RL=Reporting Level, Dil.=Dilution

Section: Sample Results Page 2 of 9 Page 2 of 9 October 26, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

Project

San Luis Obispo, CA 93401

17E8 (LA22) Description:

Los Osos BMC Monitoring

Lab No. : CC 2383685-001

Customer No.: 8000514

Sampled On : October 17, 2023 at 15:10

Sampled By: Jim Raney / James C

Received On: October 17, 2023 at 14:23

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.00		units		10/17/2023 15:10	4500HB	10/17/2023 15:10

November 10, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane

Suite 110

San Luis Obispo, CA 93401

20H1 (LA30) Description: **Project** Los Osos BMC Monitoring Lab No. : CC 2383729-001

Customer No.: 8000514

Sampled On : October 23, 2023 at 10:20

Sampled By: Iason Pitsillides

Received On: October 23, 2023 at 11:30

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF			tion	Sar	nple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	415	2.5	mg/L		1		10/27/2023	06:41	ejc	2340B	10/31/2023	15:08	ac
Calcium	69	1	mg/L		1		10/27/2023	06:41	ejc	EPA 200.7	10/31/2023	15:08	ac
Magnesium	59	1	mg/L		1		10/27/2023	06:41	ejc	EPA 200.7	10/31/2023	15:08	ac
Potassium	2	1	mg/L		1		10/27/2023	06:41	ejc	EPA 200.7	10/31/2023	15:08	ac
Sodium	39	1	mg/L		1		10/27/2023	06:41	ejc	EPA 200.7	10/31/2023	15:08	ac
Total Cations	10.0		meq/L		1		10/27/2023	06:41	ejc	Calc.	10/31/2023	15:08	ac
Boron	0.10	0.05	mg/L		1		10/27/2023	06:41	ejc	EPA 200.7	10/31/2023	15:08	ac
Copper	ND	10	ug/L		1	U	10/27/2023	06:41	ejc	EPA 200.7	10/31/2023	15:08	ac
Iron	600	50	ug/L		1		10/27/2023	06:41	ejc	EPA 200.7	10/31/2023	15:08	ac
Manganese	200	10	ug/L		1		10/27/2023	06:41	ejc	EPA 200.7	10/31/2023	15:08	ac
Zinc	ND	20	ug/L		1	U	10/27/2023	06:41	ejc	EPA 200.7	10/31/2023	15:08	ac
SAR	0.8	0.1			1		10/27/2023	06:41	ejc	Calc.	10/31/2023	15:08	ac
Total Alkalinity (as CaCO3)	340	10	mg/L		1		10/25/2023	17:00	amm	SM 4500-H+B	10/26/2023	05:22	sta
Hydroxide as OH	ND	10	mg/L		1	U	10/25/2023	17:00	amm	SM 4500-H+B	10/26/2023	05:22	sta
Carbonate as CO3	ND	10	mg/L		1	U	10/25/2023	17:00	amm	SM 4500-H+B	10/26/2023	05:22	sta
Bicarbonate as HCO3	420	10	mg/L		1		10/25/2023	17:00	amm	SM 4500-H+B	10/26/2023	05:22	sta
Sulfate	91.0	0.5	mg/L		1		10/24/2023	12:35	ldm	EPA 300.0	10/24/2023	18:52	ldm
Chloride	55	1	mg/L		1		10/24/2023	12:35	ldm	EPA 300.0	10/24/2023	18:52	ldm
Nitrate as NO3	ND	0.4	mg/L		1	Ul	10/24/2023	12:35	ldm	EPA 300.0	10/24/2023	18:52	ldm
Nitrite as N	ND	0.1	mg/L		1	U	10/24/2023	12:35	ldm	EPA 300.0	10/24/2023	18:52	ldm
Nitrate + Nitrite as N	ND	0.1	mg/L		1	Ul	10/24/2023	12:35	ldm	EPA 300.0	10/24/2023	18:52	ldm
Fluoride	0.3	0.1	mg/L		1		10/24/2023	12:35	ldm	EPA 300.0	10/24/2023	18:52	ldm
Total Anions	10.3		meq/L		1	1	10/25/2023	17:00	amm	Calc.	10/26/2023	05:22	sta
pH	7.29		units		1		10/23/2023	10:20	ip	SM 4500-H+B	10/23/2023	10:20	ip
Specific Conductance	919	1	umhos/cm		1		10/25/2023	17:00	amm	SM 4500-H+B	10/26/2023	05:22	sta
Total Dissolved Solids	590	20	mg/L		1		10/24/2023	15:00	ctl	SM 2540 C	10/25/2023	11:00	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	10/24/2023	13:40	krh	SM 5540 C	10/24/2023	13:48	krh
Aggressiveness Index	12.1	1			1		10/23/2023	10:20	ip	Calc.	10/23/2023	10:20	ip
Langelier Index (20°C)	0.2	1			1		10/23/2023	10:20	ip	Calc.	10/23/2023	10:20	ip
Nitrate Nitrogen	ND	0.1	mg/L		1	Ul	10/24/2023	12:35	ldm	EPA 300.0	10/24/2023	18:52	ldm

DQF Flags Definition:

U Constituent results were non-detect.

1 The MS/MSD did not meet QC criteria.

November 10, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

LA30 20H1 (LA30) Description:

Los Osos BMC Monitoring **Project**

Lab No. : CC 2383729-001

Customer No.: 8000514

Sampled On : October 23, 2023 at 10:20

Sampled By: Iason Pitsillides

Received On: October 23, 2023 at 11:30

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.29		units		10/23/2023 10:20	4500HB	10/23/2023 10:20

November 27, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane

Suite 110

Project

San Luis Obispo, CA 93401

13M2 LA31 Description:

Los Isos BMC-Fall Sampling

Lab No. : CC 2383934-001

Customer No.: 8000514

Sampled On: November 7, 2023 at 09:25

Sampled By : Andrea Berge

Received On: November 7, 2023 at 15:15

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample Preparation			Sample Analysis			
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	425	2.5	mg/L		1		11/09/2023	12:40	ac	2340B	11/09/2023	17:12	ac
Calcium	68	1	mg/L		1		11/09/2023	12:40	ac	EPA 200.7	11/09/2023	17:12	ac
Magnesium	62	1	mg/L		1		11/09/2023	12:40	ac	EPA 200.7	11/09/2023	17:12	ac
Potassium	3	1	mg/L		1		11/09/2023	12:40	ac	EPA 200.7	11/09/2023	17:12	ac
Sodium	247	1	mg/L		1		11/09/2023	12:40	ac	EPA 200.7	11/09/2023	17:12	ac
Total Cations	19.3		meq/L		1		11/09/2023	12:40	ac	Calc.	11/09/2023	17:12	ac
Boron	0.1	0.1	mg/L		1		11/09/2023	12:40	ac	EPA 200.7	11/09/2023	17:12	ac
Copper	ND	10	ug/L		1	U	11/09/2023	12:40	ac	EPA 200.7	11/09/2023	17:12	ac
Iron	40	30	ug/L		1		11/09/2023	12:40	ac	EPA 200.7	11/09/2023	17:12	ac
Manganese	ND	10	ug/L		1	U	11/09/2023	12:40	ac	EPA 200.7	11/09/2023	17:12	ac
Zinc	ND	20	ug/L		1	U	11/09/2023	12:40	ac	EPA 200.7	11/09/2023	17:12	ac
SAR	5.2	0.1			1		11/09/2023	12:40	ac	Calc.	11/09/2023	17:12	ac
Total Alkalinity (as CaCO3)	60	10	mg/L		1		11/14/2023	16:16	amm	SM 4500-H+B	11/14/2023	21:48	amm
Hydroxide as OH	ND	10	mg/L		1	U	11/14/2023	16:16	amm	SM 4500-H+B	11/14/2023	21:48	amm
Carbonate as CO3	ND	10	mg/L		1	U	11/14/2023	16:16	amm	SM 4500-H+B	11/14/2023	21:48	amm
Bicarbonate as HCO3	70	10	mg/L		1		11/14/2023	16:16	amm	SM 4500-H+B	11/14/2023	21:48	amm
Sulfate	131	0.5	mg/L		1		11/16/2023	15:00	ldm	EPA 300.0	11/16/2023	21:02	ldm
Chloride	600	13*	mg/L		10		11/16/2023	15:00	ldm	EPA 300.0	11/17/2023	05:00	ldm
Nitrate as NO3	3.2	0.4	mg/L		1		11/08/2023	10:30	lfs	SM 4500-NO3 F	11/08/2023	11:50	lfs
Nitrite as N	ND	0.2	mg/L		1	U	11/08/2023	10:30	lfs	SM 4500-NO3 F	11/08/2023	11:49	lfs
Nitrate + Nitrite as N	0.7	0.4	mg/L		1		11/08/2023	10:30	lfs	SM 4500-NO3 F	11/08/2023	11:50	lfs
Fluoride	ND	0.1	mg/L		1	U	11/16/2023	15:00	ldm	EPA 300.0	11/16/2023	21:02	ldm
Total Anions	20.9		meq/L		1		11/14/2023	16:16	amm	Calc.	11/14/2023	21:48	amm
pH	7.97		units		1		11/07/2023	09:25	ab	SM 4500-H+B	11/07/2023	09:25	ab
Specific Conductance	2340	1	umhos/cm		1		11/14/2023	16:16	amm	SM 4500-H+B	11/14/2023	21:48	amm
Total Dissolved Solids	1440	20	mg/L		1		11/09/2023	12:30	ctl	SM 2540 C	11/10/2023	11:00	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	11/08/2023	07:29	krh	SM 5540 C	11/08/2023	07:41	krh
Aggressiveness Index	12.0	1			1		11/07/2023	09:25	ab	Calc.	11/07/2023	09:25	ab
Langelier Index (20°C)	0.05	1			1		11/07/2023	09:25	ab	Calc.	11/07/2023	09:25	ab
Nitrate Nitrogen	0.7	0.4	mg/L		1		11/08/2023	10:30	lfs	SM 4500-NO3 F	11/08/2023	11:50	lfs

DOF Flags Definition:

U Constituent results were non-detect.

ND=Non-Detected, RL=Reporting Level * RL adjusted for dilution, Dil.=Dilution

November 27, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

13M2 LA31 Description:

Los Isos BMC-Fall Sampling **Project**

Lab No. : CC 2383934-001

Customer No.: 8000514

Sampled On: November 7, 2023 at 09:25

Sampled By : Andrea Berge

Received On: November 7, 2023 at 15:15

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	San	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.97		units		11/07/2023 09:25	4500HB	11/07/2023 09:25

ND=Non-Detected, RL=Reporting Level. * RL adjusted for dilution

LA31

Lab No.

Matrix

Customer No.: 8000514

Sampled By: Iason Pitsillides

: CC 2383570-001

Sampled On: October 10, 2023 at 09:33

Received On: October 10, 2023 at 10:38

: Ground Water

October 19, 2023

Cleath-Harris Geologists

Attn: Spencer Harris 75 Zaca Lane

Suite 110

Project

San Luis Obispo, CA 93401

18K9 (CA 32) Description:

Los Osos BMC Monitoring

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sai	nple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	168	2.5	mg/L		1		10/17/2023	13:00	ac	2340B	10/18/2023	13:42	ac
Calcium	26	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	13:42	ac
Magnesium	25	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	13:42	ac
Potassium	2	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	13:42	ac
Sodium	32	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	13:42	ac
Total Cations	4.8		meq/L		1		10/17/2023	13:00	ac	Calc.	10/18/2023	13:42	ac
Boron	ND	0.1	mg/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	13:42	ac
Copper	ND	10	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	13:42	ac
Iron	ND	30	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	13:42	ac
Manganese	ND	10	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	13:42	ac
Zinc	ND	20	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	13:42	ac
SAR	1.1	0.1			1		10/17/2023	13:00	ac	Calc.	10/18/2023	13:42	ac
Total Alkalinity (as CaCO3)	160	10	mg/L		1		10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	01:00	amm
Hydroxide as OH	ND	10	mg/L		1	U	10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	01:00	amm
Carbonate as CO3	ND	10	mg/L		1	U	10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	01:00	amm
Bicarbonate as HCO3	200	10	mg/L		1		10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	01:00	amm
Sulfate	21.4	0.5	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	02:26	ldm
Chloride	38	1	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	02:26	ldm
Nitrate as NO3	5.9	0.4	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	02:26	ldm
Nitrite as N	ND	0.1	mg/L		1	U	10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	02:26	ldm
Nitrate + Nitrite as N	1.3	0.1	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	02:26	ldm
Fluoride	0.1	0.1	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	02:26	ldm
Total Anions	4.9		meq/L		1		10/16/2023	15:10	amm	Calc.	10/17/2023	01:00	amm
pH	7.63		units		1		10/10/2023	09:33	ip	SM 4500-H+B	10/10/2023	09:33	ip
Specific Conductance	482	1	umhos/cm		1		10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	01:00	amm
Total Dissolved Solids	290	20	mg/L		1		10/13/2023	11:00	ctl	SM 2540 C	10/16/2023	11:00	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	10/11/2023	16:45	krh	SM 5540 C	10/11/2023	17:02	krh
Aggressiveness Index	11.6	1			1		10/10/2023	09:33	ip	Calc.	10/10/2023	09:33	ip
Langelier Index (20°C)	-0.2	1			1		10/10/2023	09:33	ip	Calc.	10/10/2023	09:33	ip
Nitrate Nitrogen	1.3	0.1	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	02:26	ldm

DQF Flags Definition:

U Constituent results were non-detect.

ND=Non-Detected, RL=Reporting Level, Dil.=Dilution

October 19, 2023

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

18K9 (CA 32) Description:

Los Osos BMC Monitoring **Project**

Lab No. : CC 2383570-001

Customer No.: 8000514

Sampled On: October 10, 2023 at 09:33

Sampled By: Iason Pitsillides

Received On: October 10, 2023 at 10:38

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.63		units		10/10/2023 09:33	4500HB	10/10/2023 09:33

ND=Non-Detected, RL=Reporting Level.

FAX: (559)734-8435 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810

February 22, 2024

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

18K (LA39-Los Olivos #5) Description:

Fall BMC GSWC **Project**

Lab No. : CC 2383571-006

Customer No.: 8000514

Sampled On : October 10, 2023 at 08:45

Sampled By : Jerome Dengate

Received On: October 10, 2023 at 10:38

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	Sar	nple Analy	lysis		
General Mineral							Date	Time	Who	Method	Date	Time	Who	
Total Hardness as CaCO3	245	2.5	mg/L		1		10/17/2023	13:00	ac	2340B	10/18/2023	15:20	ac	
Calcium	37	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:20	ac	
Magnesium	37	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:20	ac	
Potassium	2	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:20	ac	
Sodium	42	1	mg/L		1		10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:20	ac	
Total Cations	6.8		meq/L		1		10/17/2023	13:00	ac	Calc.	10/18/2023	15:20	ac	
Boron	ND	0.1	mg/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:20	ac	
Copper	ND	10	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:20	ac	
Iron	ND	30	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:20	ac	
Manganese	ND	10	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:20	ac	
Zinc	ND	20	ug/L		1	U	10/17/2023	13:00	ac	EPA 200.7	10/18/2023	15:20	ac	
SAR	1.2	0.1			1		10/17/2023	13:00	ac	Calc.	10/18/2023	15:20	ac	
Total Alkalinity (as CaCO3)	250	10	mg/L		1		10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	01:23	amm	
Hydroxide as OH	ND	10	mg/L		1	U	10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	01:23	amm	
Carbonate as CO3	ND	10	mg/L		1	U	10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	01:23	amm	
Bicarbonate as HCO3	310	10	mg/L		1		10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	01:23	amm	
Sulfate	29.4	0.5	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	03:28	ldm	
Chloride	37	1	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	03:28	ldm	
Nitrate as NO3	ND	0.4	mg/L		1	U	10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	03:28	ldm	
Nitrite as N	ND	0.1	mg/L		1	U	10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	03:28	ldm	
Nitrate + Nitrite as N	ND	0.1	mg/L		1	J	10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	03:28	ldm	
Fluoride	0.1	0.1	mg/L		1		10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	03:28	ldm	
Total Anions	6.7		meq/L		1		10/16/2023	15:10	amm	Calc.	10/17/2023	01:23	amm	
pH	7.37		units		1		10/10/2023	08:45	tc	SM 4500-H+B	10/10/2023	08:45	tc	
Specific Conductance	632	1	umhos/cm		1		10/16/2023	15:10	amm	SM 4500-H+B	10/17/2023	01:23	amm	
Total Dissolved Solids	370	20	mg/L		1		10/13/2023	11:00	ctl	SM 2540 C	10/16/2023	11:00	ctl	
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	10/11/2023	16:45	krh	SM 5540 C	10/11/2023	17:02	krh	
Aggressiveness Index	11.7	1			1		10/10/2023	08:45	tc	Calc.	10/10/2023	08:45	tc	
Langelier Index (20°C)	-0.1	1			1		10/10/2023	08:45	tc	Calc.	10/10/2023	08:45	tc	
Nitrate Nitrogen	ND	0.1	mg/L		1	U	10/11/2023	14:08	ldm	EPA 300.0	10/12/2023	03:28	ldm	

DQF Flags Definition:

U Constituent results were non-detect.

ND=Non-Detected, RL=Reporting Level * RL adjusted for dilution, Dil.=Dilution

Section: Sample Results Page 13 of 17 Amended Page 13 of 17

J Reported value is estimated; detected at a concentration below the RL and above the laboratory MDL.

February 22, 2024

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

LA39

18K (LA39-Los Olivos #5) Description:

Fall BMC GSWC **Project**

Lab No. : CC 2383571-006

Customer No.: 8000514

Sampled On : October 10, 2023 at 08:45

Sampled By : Jerome Dengate

Received On: October 10, 2023 at 10:38

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.37		units		10/10/2023 08:45	4500HB	10/10/2023 08:45
Conductivity	.664		mmhos/cm		10/10/2023 08:45	2510B	10/10/2023 08:45
Temperature	70.3		°F		10/10/2023 08:45	2550B	10/10/2023 08:45

ND=Non-Detected, RL=Reporting Level. * RL adjusted for dilution

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

Description: 13 BA (LA40) **Project**

LA40

Los Osos BMC Monitoring

Sample Results - Inorganic

Lab No. : CC 2383759-001

Customer No.: 8000514

Sampled On : October 24, 2023 at 14:12

Sampled By: Iason Pitsillides

Received On: October 24, 2023 at 15:33

Matrix : Ground Water

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repara	tion	San	ıple Analys	is	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	4450	12*	mg/L		5	1	10/27/2023	14:40	ac	2340B	10/27/2023	20:07	ac
Calcium	764	5*	mg/L		5	1	10/27/2023	14:40	ac	EPA 200.7	10/27/2023	20:07	ac
Magnesium	619	5*	mg/L		5		10/27/2023	14:40	ac	EPA 200.7	10/27/2023	20:07	ac
Potassium	6	1	mg/L		1		10/26/2023	08:00	ac	EPA 200.7	10/26/2023	16:18	ac
Sodium	201	1	mg/L		1		10/26/2023	08:00	ac	EPA 200.7	10/26/2023	16:18	ac
Total Cations	98.0	*	meq/L		5	1	10/27/2023	14:40	ac	Calc.	10/27/2023	20:07	ac
Boron	ND	0.1	mg/L		1	U	10/26/2023	08:00	ac	EPA 200.7	10/26/2023	16:18	ac
Copper	ND	10	ug/L		1	U	10/26/2023	08:00	ac	EPA 200.7	10/26/2023	16:18	ac
Iron	ND	30	ug/L		1	U	10/26/2023	08:00	ac	EPA 200.7	10/26/2023	16:18	ac
Manganese	700	10	ug/L		1		10/26/2023	08:00	ac	EPA 200.7	10/26/2023	16:18	ac
Zinc	ND	20	ug/L		1	U	10/26/2023	08:00	ac	EPA 200.7	10/26/2023	16:18	ac
SAR	1.3	0.1*			5	1	10/27/2023	14:40	ac	Calc.	10/27/2023	20:07	ac
Total Alkalinity (as CaCO3)	230	10	mg/L		1		10/29/2023	17:32	amm	SM 4500-H+B	10/30/2023	01:18	amm
Hydroxide as OH	ND	10	mg/L		1	U	10/29/2023	17:32	amm	SM 4500-H+B	10/30/2023	01:18	amm
Carbonate as CO3	ND	10	mg/L		1	U	10/29/2023	17:32	amm	SM 4500-H+B	10/30/2023	01:18	amm
Bicarbonate as HCO3	280	10	mg/L		1		10/29/2023	17:32	amm	SM 4500-H+B	10/30/2023	01:18	amm
Sulfate	259	2.5*	mg/L		5		11/03/2023	17:11	ldm	EPA 300.0	11/04/2023	04:52	ldm
Chloride	3200	70*	mg/L		70		11/03/2023	17:11	ldm	EPA 300.0	11/04/2023	16:27	ldm
Nitrate as NO3	ND	0.4	mg/L		1	U	10/25/2023	13:15	lfs	SM 4500-NO3 F	10/25/2023	16:35	lfs
Nitrite as N	ND	0.2	mg/L		1	U	10/25/2023	13:15	lfs	SM 4500-NO3 F	10/25/2023	16:34	lfs
Nitrate + Nitrite as N	ND	0.4	mg/L		1	U	10/25/2023	13:15	lfs	SM 4500-NO3 F	10/25/2023	16:35	lfs
Fluoride	ND	0.5*	mg/L		5	U	11/03/2023	17:11	ldm	EPA 300.0	11/04/2023	04:52	ldm
Total Anions	100		meq/L		1		10/29/2023	17:32	amm	Calc.	10/30/2023	01:18	amm
pH	6.91		units		1		10/24/2023	14:12	ip	SM 4500-H+B	10/24/2023	14:12	ip
Specific Conductance	9200	1	umhos/cm		1		10/29/2023	17:32	amm	SM 4500-H+B	10/30/2023	01:18	amm
Total Dissolved Solids	9610	20	mg/L		1		10/25/2023	16:30	ctl	SM 2540 C	10/26/2023	11:00	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	10/25/2023	13:34	krh	SM 5540 C	10/26/2023	13:41	krh
Aggressiveness Index	12.6	1			1		10/24/2023	14:12	ip	Calc.	10/24/2023	14:12	ip
Langelier Index (20°C)	0.5	1			1	1	10/24/2023	14:12	ip	Calc.	10/24/2023	14:12	ip
Nitrate Nitrogen	ND	0.4	mg/L		1	U	10/25/2023	13:15	lfs	SM 4500-NO3 F	10/25/2023	16:35	lfs
DOE EL D. C													

DOF Flags Definition:

l The MS/MSD did not meet QC criteria.

ND=Non-Detected, RL=Reporting Level * RL adjusted for dilution, Dil.=Dilution

 $U\quad \hbox{Constituent results were non-detect.}$

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

Project

San Luis Obispo, CA 93401

13 BA (LA40) Description:

Los Osos BMC Monitoring

Lab No. : CC 2383759-001

Customer No.: 8000514

Sampled On : October 24, 2023 at 14:12

Sampled By: Iason Pitsillides

Received On: October 24, 2023 at 15:33

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	6.91		units		10/24/2023 14:12	4500HB	10/24/2023 14:12

ND=Non-Detected, RL=Reporting Level. * RL adjusted for dilution

FAX: (559)734-8435 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

Project

San Luis Obispo, CA 93401

13Bb (LA41) Description:

Los Osos BMC Monitoring

Lab No. : CC 2383739-001

Customer No.: 8000514

Sampled On : October 23, 2023 at 14:45

Sampled By: Jim Raney

Received On: October 23, 2023 at 15:55

Matrix : Ground Water

Sample Results - Inorganic

Constituent	Result	RL	Units	Note	Dil.	DQF	Sample P	repa <u>r</u> a	tion	Sar	nple Analy	sis	
General Mineral							Date	Time	Who	Method	Date	Time	Who
Total Hardness as CaCO3	281	2.5	mg/L		1		10/25/2023	12:00	ac	2340B	10/25/2023	13:44	ac
Calcium	50	1	mg/L		1		10/25/2023	12:00	ac	EPA 200.7	10/25/2023	13:44	ac
Magnesium	38	1	mg/L		1		10/25/2023	12:00	ac	EPA 200.7	10/25/2023	13:44	ac
Potassium	2	1	mg/L		1		10/25/2023	12:00	ac	EPA 200.7	10/25/2023	13:44	ac
Sodium	50	1	mg/L		1		10/25/2023	12:00	ac	EPA 200.7	10/25/2023	13:44	ac
Total Cations	7.8		meq/L		1		10/25/2023	12:00	ac	Calc.	10/25/2023	13:44	ac
Boron	ND	0.1	mg/L		1	U	10/25/2023	12:00	ac	EPA 200.7	10/25/2023	13:44	ac
Copper	ND	10	ug/L		1	U	10/25/2023	12:00	ac	EPA 200.7	10/25/2023	13:44	ac
Iron	160	30	ug/L		1		10/25/2023	12:00	ac	EPA 200.7	10/25/2023	13:44	ac
Manganese	110	10	ug/L		1		10/25/2023	12:00	ac	EPA 200.7	10/25/2023	13:44	ac
Zinc	ND	20	ug/L		1	U	10/25/2023	12:00	ac	EPA 200.7	10/25/2023	13:44	ac
SAR	1.3	0.1			1		10/25/2023	12:00	ac	Calc.	10/25/2023	13:44	ac
Total Alkalinity (as CaCO3)	280	10	mg/L		1		10/29/2023	17:32	amm	SM 4500-H+B	10/30/2023	02:38	amm
Hydroxide as OH	ND	10	mg/L		1	U	10/29/2023	17:32	amm	SM 4500-H+B	10/30/2023	02:38	amm
Carbonate as CO3	ND	10	mg/L		1	U	10/29/2023	17:32	amm	SM 4500-H+B	10/30/2023	02:38	amm
Bicarbonate as HCO3	340	10	mg/L		1		10/29/2023	17:32	amm	SM 4500-H+B	10/30/2023	02:38	amm
Sulfate	57.2	0.5	mg/L		1		10/24/2023	12:35	ldm	EPA 300.0	10/24/2023	19:13	ldm
Chloride	48	1	mg/L		1		10/24/2023	12:35	ldm	EPA 300.0	10/24/2023	19:13	ldm
Nitrate as NO3	ND	0.4	mg/L		1	Ul	10/24/2023	12:35	ldm	EPA 300.0	10/24/2023	19:13	ldm
Nitrite as N	ND	0.1	mg/L		1	U	10/24/2023	12:35	ldm	EPA 300.0	10/24/2023	19:13	ldm
Nitrate + Nitrite as N	ND	0.1	mg/L		1	Jl	10/24/2023	12:35	ldm	EPA 300.0	10/24/2023	19:13	ldm
Fluoride	ND	0.1	mg/L		1	U	10/24/2023	12:35	ldm	EPA 300.0	10/24/2023	19:13	ldm
Total Anions	8.1		meq/L		1	l	10/29/2023	17:32	amm	Calc.	10/30/2023	02:38	amm
pH	7.02		units		1		10/23/2023	14:45	jr	SM 4500-H+B	10/23/2023	14:45	jr
Specific Conductance	754	1	umhos/cm		1		10/29/2023	17:32	amm	SM 4500-H+B	10/30/2023	02:38	amm
Total Dissolved Solids	460	20	mg/L		1		10/24/2023	15:00	ctl	SM 2540 C	10/25/2023	11:00	ctl
MBAS, Calc. as LAS, MW 320	Negative	0.1	mg/L		1	U	10/24/2023	13:40	krh	SM 5540 C	10/24/2023	13:48	krh
Aggressiveness Index	11.6	1			1		10/23/2023	14:45	jr	Calc.	10/23/2023	14:45	jr
Langelier Index (20°C)	-0.3	1			1		10/23/2023	14:45	jr	Calc.	10/23/2023	14:45	jr
Nitrate Nitrogen	ND	0.1	mg/L		1	Ul	10/24/2023	12:35	ldm	EPA 300.0	10/24/2023	19:13	ldm

DQF Flags Definition:

- U Constituent results were non-detect.
- The MS/MSD did not meet QC criteria.
- Reported value is estimated; detected at a concentration below the RL and above the laboratory MDL.

ND=Non-Detected, RL=Reporting Level, Dil.=Dilution

Section: Sample Results Page 2 of 6 Page 2 of 6

Cleath-Harris Geologists

Attn: Spencer Harris

75 Zaca Lane Suite 110

San Luis Obispo, CA 93401

13Bb (LA41) Description:

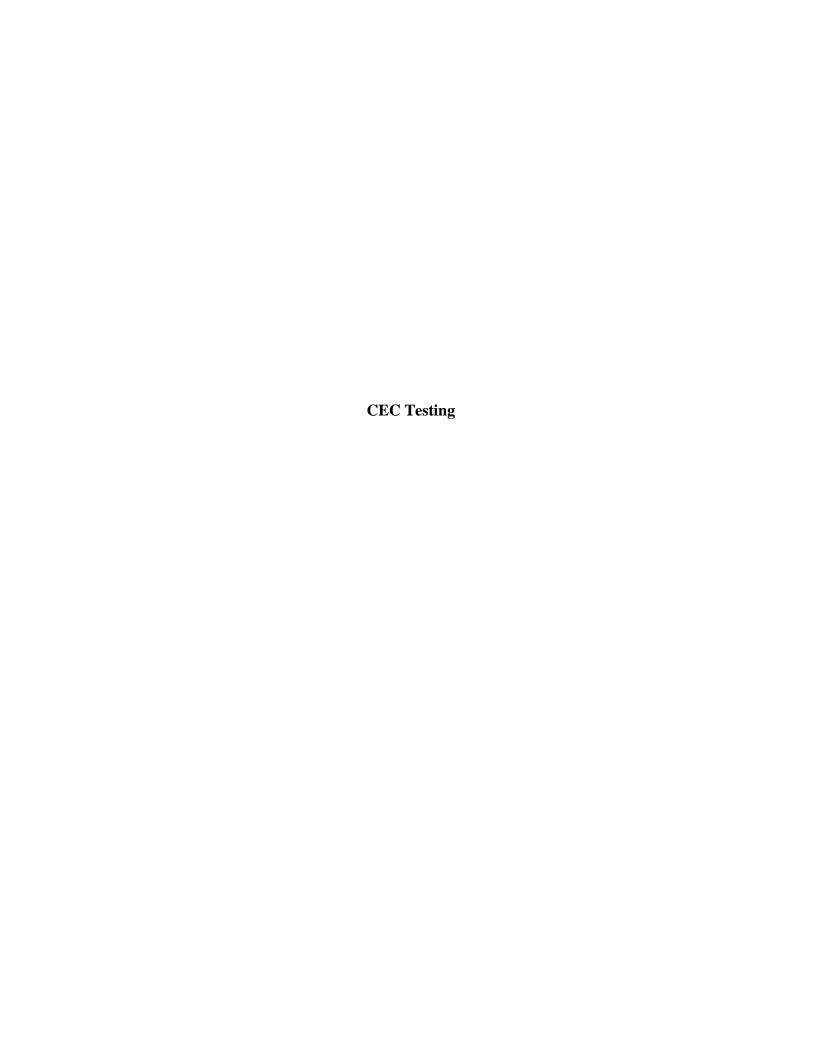
Los Osos BMC Monitoring **Project**

Lab No. : CC 2383739-001

Customer No.: 8000514

Sampled On : October 23, 2023 at 14:45

Sampled By: Jim Raney


Received On: October 23, 2023 at 15:55

Matrix : Ground Water

Sample Results - Field Test

Constituent	Result	RL	Units	Note	Sample Preparation	Sam	ple Analysis
Field Test					Date	Method	Date
pH (Field)	7.02		units		10/23/2023 14:45	4500HB	10/23/2023 14:45

ND=Non-Detected, RL=Reporting Level.

Groundwater Monitoring Field Log LOBP Monitoring Program

Date:	10/30/2023
Operator:	A. Berge, I. Pitsillides

Well number and location: 30S/11E-13Q2 (FW5)

Site and wellhead conditions: Sunny, cool, and still. Cap in place and locked.

Static water depth (feet):	78.39
Well depth (feet):	105
Water column (feet):	26.61
Casing diameter (inches):	2
Minimum purge volume (gal)	15
Purge rate (gpm):	1.1
Pumping water level (feet):	80.02
Pump setting (feet):	100
Minimum purge time (min):	
Time begin purge:	10:03

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
10:03	1	1,034	9.24	18.0	Cloudy, orange, odorless
10:07	5	891.0	7.67	18.3	Slightly cloudy, colorless, odorless
10:12	10	863.8	7.07	18.2	Slightly cloudy, colorless, odorless
10:17	15	853.4	6.71	18.5	Clear, colorless, odorless
10:22	20	851.8	6.50	18.5	Clear, colorless, odorless
10:25	25	850.6	6.45	18.3	Clear, colorless, odorless
					Sampled @ 10:25

^{*}Turbidity, color, odor, sheen, debris, etc.

Groundwater Monitoring Field Log LOBP Monitoring Program

Date:	10/20/2023			
Operator:	A. Berge, I. Pitsillides			

Well number and location: 30S/10E-24A (FW6)

Site and wellhead conditions: Sunny, warm, and still. Monument secure and locked.

Static water depth (feet):	140.27
Well depth (feet):	165.93
Water column (feet):	25.66
Casing diameter (inches):	2
Minimum purge volume (gal)	15
Purge rate (gpm):	0.7
Pumping water level (feet):	140.37
Pump setting (feet):	150
Minimum purge time (min):	
Time begin purge:	11:26 AM

Time	Gallons	EC (μS/cm)	рН	Temp. (°C)	Comments*
11:26	1	841.3	6.76	19.5	Cloudy, colorless, odorless
11:32	5	834.5	6.71	20.2	Slightly cloudy, white/grey, odorless
11:37	7	841.3	6.68	19.7	Slightly cloudy, colorless, odorless
11:39	10	838.9	6.60	20.5	Slightly cloudy, colorless, odorless
11:44	13	838.0	6.67	20.4	Slightly cloudy, colorless, odorless
11:47	15	837.9	6.68	20.2	Clear, colorless, odorless
					Sampled @ 11:45

^{*}Turbidity, color, odor, sheen, debris, etc.

FINAL REPORT

Work Orders: 3J31003 Report Date: 1/12/2024

Received Date: 10/31/2023

Turnaround Time: Normal

Phones: (805) 543-1413

Fax:

P.O. #:

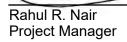
Billing Code:

Project: Los Osos CEC Monitoring

Attn: Spencer Harris

Client: Cleath-Harris Geologists, Inc.

75 Zaca Lane, Suite 110 San Luis Obispo, CA 93401


ELAP-CA #1132 • EPA-UCMR #CA00211 • LACSD #10143

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Dear Spencer Harris,

Enclosed are the results of analyses for samples received 10/31/23 with the Chain-of-Custody document. The samples were received in good condition, at 5.4 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Reviewed by:

FINAL REPORT

Cleath-Harris Geologists, Inc. 75 Zaca Lane, Suite 110 San Luis Obispo, CA 93401 **Project Number:** Los Osos CEC Monitoring

Reported:

01/12/2024 10:27

Sample Summary

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifiers
FW5 (13Q2)	I.Pittsillides	3J31003-01	Water	10/30/23 10:25	
FW6 (24A)	I.Pittsillides	3J31003-02	Water	10/30/23 11:45	

Project Manager: Spencer Harris

Analyses Accreditation Summary

Analyte	CAS #	Not By NELAP	ANAB ISO 17025
SM 5910B in Water UV 254			

FINAL REPORT

Cleath-Harris Geologists, Inc. 75 Zaca Lane, Suite 110 San Luis Obispo, CA 93401 Project Number: Los Osos CEC Monitoring

Reported:

01/12/2024 10:27

Sample: FW5 (13Q2) Sampled: 10/30/23 10:25 by I.Pittsillides

Project Manager: Spencer Harris

3J31003-01 (Water)

3J31003-01 (Water)						
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Conventional Chemistry/Physical	Parameters by APHA/EPA/ASTM Methods					
Method: EPA 350.1		Instr: AA06				
Batch ID: W3K0431	Preparation: _NONE (WETCHEM)	Prepared: 1	1/06/23 13	:11		Analyst: AEC
Ammonia as N	ND	0.10	mg/l	1	11/08/23	
Method: EPA 353.2		Instr: AA01				
Batch ID: W3J2602	Preparation: _NONE (WETCHEM)	Prepared: 1	0/31/23 18	:01		Analyst: ISM
Nitrate as N	11	1.6	mg/l	8	10/31/23 19:1	5
Method: SM 2510B		Instr: AA02				
Batch ID: W3K0227	Preparation: _NONE (WETCHEM)	Prepared: 1	1/02/23 14	:45		Analyst: mes
Specific Conductance (EC)	900	2.0	umhos/cm	1	11/02/23	-
Method: SM 5310B		Instr: TOC02	2			
Batch ID: W3K0053	Preparation: _NONE (TOC/TOX)	Prepared: 1	1/01/23 10	:16		Analyst: REM
Total Organic Carbon (TOC)	0.49	0.30	mg/l	1	11/02/23	
Method: SM 5910B		Instr: UVVIS	04			
Batch ID: W3J2577	Preparation: _NONE (WETCHEM)	Prepared: 10	0/31/23 14	:49		Analyst: ZZZ
UV 254	0.010	0.009	1/cm	1	10/31/23 16:3	6
Nitrosamines by isotopic dilution	GC/MS CI Mode					
Method: EPA 1625B		Instr: GCMS	09			
Batch ID: W3K0265	Preparation: EPA 3535/SPE	Prepared: 1	1/03/23 08	:06		Analyst: mld
N-Nitrosodimethylamine	ND	2.0	ng/l	1	11/07/23	
PPCPs - Isotope Dilution LCMSMS						

PPCPs - Isotope Dilution LCMS	SMS					
Method: EPA 1694M		Instr: LCMS	503			
Batch ID: W3K0187	Preparation: _NONE (LC)	Prepared:	11/02/23 10	:58		Analyst: JNA
Acetaminophen	ND	5.0	ng/l	1	11/03/23	
Amoxicillin	ND	20	ng/l	1	11/03/23	
Atenolol	ND	4.0	ng/l	1	11/03/23	
Atorvastatin	ND	4.0	ng/l	1	11/03/23	
Caffeine	ND	4.0	ng/l	1	11/03/23	
Carbamazepine	61	4.0	ng/l	1	11/03/23	
Cotinine	ND	8.0	ng/l	1	11/03/23	
Diazepam	ND	4.0	ng/l	1	11/03/23	
Fluoxetine	ND	4.0	ng/l	1	11/03/23	
Meprobamate	10	4.0	ng/l	1	11/03/23	
Methadone	ND	4.0	ng/l	1	11/03/23	
Sulfamethoxazole	120	4.0	ng/l	1	11/03/23	
TCPP	ND	50	ng/l	1	11/03/23	
Trimethoprim	ND	4.0	ng/l	1	11/03/23	

Surrogate(s)

3J31003 Page 3 of 19

FINAL REPORT

Cleath-Harris Geologists, Inc. 75 Zaca Lane, Suite 110 San Luis Obispo, CA 93401

TDCPP

3J31003

Project Number: Los Osos CEC Monitoring

Project Manager: Spencer Harris

Reported:

01/12/2024 10:27

(Continued)

Sa	ampie Resul	ts						(Continued
Sample:	FW5 (13Q2)				Sample	d: 10/30)/23 10:25 b	y I.Pittsillide
	3J31003-01 (Wate	er)						(Continued
Analyte	(****	Result		MRL	Units	Dil	Analyzed	Qualifie
	tope Dilution LCMS	MS (Continued)					-	
	EPA 1694M			Instr: LCMS	03			
Batch ID): W3K0187	Preparation: _NONE (LC)		Prepared: 1	11/02/23 10	:58		Analyst: JNA
Acetamin	ophen-d4	88%	Conc: 2630	20-500			11/03/23	-
Amoxicillii	in-d4-	88%	Conc: 4400	20-500			11/03/23	
Atenolol-c	d7	114%	Conc: 456	20-500			11/03/23	
Caffeine-1	13C3	77%	Conc: 153	20-500			11/03/23	
Carbama:	zepine- 13C2, d2		Conc: 42.8	20-500			11/03/23	
Cotinine-c	d3		Conc: 232	20-500			11/03/23	
Diazepan	n-d5		Conc: 2080	20-500			11/03/23	
Fluoxetine	e-d5	95%	Conc: 191	20-500			11/03/23	
Methadon	ne-d3	96%	Conc: 38.4	20-500			11/03/23	
Sulfameth	hoxazole-d4		Conc: 204	20-500			11/03/23	
TCPP-d18	8		Conc: 2060	20-500			11/03/23	
Trimethop	orim-d9	98%	Conc: 196	20-500			11/03/23	
Method: [EPA 1694M			Instr: LCMS	03			
Batch ID): W3K0194	Preparation: _NONE (LC)		Prepared: 1	11/02/23 11	:14		Analyst: JN
17-b-Estra		• • •		4.0	ng/l	1	11/04/23	
Ibuprofen		ND		4.0	ng/l	1	11/04/23	
Sucralos	:e	12000		20	ng/l	1	11/04/23	E-0
Surrogate(s) 17-b-Estra	•		Conc: 199	20-500			11/04/23	
		100%	Conc: 201	20-500			11/04/23	
Sucralose		57%	Conc: 574	20-500			11/04/23	
			COIIC. 374				11/04/23	
	EPA 1694M	.		Instr: LCMS		0.0		
): W3K0195 nylestradiol	Preparation: _NONE (LC)		Prepared: 1	11/02/23 11 ng/l	:03	11/04/23	Analyst: rj
		ND		10		1	11/04/23	
Bisphenol					ng/l			
Diclofena		ND ND		4.0	ng/l	1	11/04/23	
Estrone -		ND ND		4.0	ng/l	1	11/04/23	
Gemfibroz		ND ND		4.0	ng/l	1	11/04/23	
lopromide		ND		4.0	ng/l	1	11/04/23	
Naproxen				4.0	ng/l	1	11/04/23	
Phenytoi				4.0	ng/l	1	11/04/23	
•		200		4.0	ng/l	1	11/04/23	
Primidon	16	200			-			
_		ND		4.0	ng/l	1	11/04/23	

50

ng/l

11/04/23

Page 4 of 19

FINAL REPORT

Cleath-Harris Geologists, Inc. 75 Zaca Lane, Suite 110 San Luis Obispo, CA 93401

Project Number: Los Osos CEC Monitoring

Reported:

01/12/2024 10:27

Sample Results

(Continued)

FW5 (13Q2) Sampled: 10/30/23 10:25 by I.Pittsillides

Project Manager: Spencer Harris

3J31003-01 (Water)							(Continued)
Analyte	Result		MRL	Units	Dil	Analyzed	Qualifier
PPCPs - Isotope Dilution LCMSMS	S (Continued)						
Method: EPA 1694M			Instr: LCMS	03			
Batch ID: W3K0195	Preparation: _NONE (LC)		Prepared: 1	1/02/23 11	:03		Analyst: rjr
Testosterone	ND		4.0	ng/l	1	11/04/23	
Triclosan	ND		8.0	ng/l	1	11/04/23	
Surrogate(s)							
17-a-Ethynylestradiol-d4	110%	Conc: 220	20-500			11/04/23	
Bisphenol A-d16	105%	Conc: 209	20-500			11/04/23	
Gemfibrozil-d6	112%	Conc: 112	20-500			11/04/23	
lopromide-d3	48%	Conc: 95.1	20-500			11/04/23	
Naproxen-d3	98%	Conc: 196	20-500			11/04/23	
Phenytoin-d10	101%	Conc: 202	20-500			11/04/23	
Primidone-d5	34%	Conc: 68.3	20-500			11/04/23	
Progesterone-d9	98%	Conc: 196	20-500			11/04/23	
Salicylic Acid-d4	81%	Conc: 406	20-500			11/04/23	
TDCPP-d15	93%	Conc: 1870	20-500			11/04/23	
Testosterone-d3	101%	Conc: 203	20-500			11/04/23	

Sample Results FW5 (13Q2)

Triclosan-d3

Sample:

(Continued)

11/04/23

Sampled: 10/30/23 10:25 by I.Pittsillides

3J31003-01RE1 (Water)

Analyte Result Units **Analyzed** Qualifier **PPCPs - Isotope Dilution LCMSMS** Method: EPA 1694M Instr: LCMS03 Batch ID: W3K0187 Preparation: _NONE (LC) Prepared: 11/02/23 10:58 Analyst: JNA DEET 4.0 ng/l 11/06/23 TCEP 11/06/23 ng/l Surrogate(s) DEET-d7 Conc: 17.8 20-500 11/06/23 Conc: 391 20-500 11/06/23

92% Conc: 369

20-500

FINAL REPORT

Cleath-Harris Geologists, Inc. 75 Zaca Lane, Suite 110 San Luis Obispo, CA 93401

Sample:

Project Number: Los Osos CEC Monitoring

Project Manager: Spencer Harris

Reported:

01/12/2024 10:27

(Continued)

Sampled: 10/30/23 11:45 by I.Pittsillides

3J31003-02	(Water)

FW6 (24A)

3J3 1003-02 (Water)						
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Conventional Chemistry/Physical F	Parameters by APHA/EPA/ASTM Methods					
Method: EPA 350.1		Instr: AA06				
Batch ID: W3K0431	Preparation: _NONE (WETCHEM)	Prepared: 1	1/06/23 13:	11		Analyst: AEC
Ammonia as N	ND	0.10	mg/l	1	11/08/23	
Method: EPA 353.2		Instr: AA01				
Batch ID: W3J2602	Preparation: _NONE (WETCHEM)	Prepared: 10)/31/23 18:0	01		Analyst: ISM
Nitrate as N	3.2	0.20	mg/l	1	10/31/23 18:4	4
Method: SM 2510B		Instr: AA02				
Batch ID: W3K0227	Preparation: _NONE (WETCHEM)	Prepared: 1	1/02/23 14:4	45		Analyst: mes
Specific Conductance (EC)	870	2.0	umhos/cm	1	11/02/23	
Method: SM 5310B		Instr: TOC02				
Batch ID: W3K0053	Preparation: _NONE (TOC/TOX)	Prepared: 1	1/01/23 10:	16		Analyst: REM
Total Organic Carbon (TOC)	0.91	0.30	mg/l	1	11/02/23	
Method: SM 5910B		Instr: UVVIS	04			
Batch ID: W3J2577	Preparation: _NONE (WETCHEM)	Prepared: 10)/31/23 14:4	49		Analyst: ZZZ
UV 254	0.014	0.009	1/cm	1	10/31/23 16:4	.0
Nitrosamines by isotopic dilution (GC/MS CI Mode					
Method: EPA 1625B		Instr: GCMS	09			
Batch ID: W3K0265	Preparation: EPA 3535/SPE	Prepared: 1	/03/23 08:0	06		Analyst: mld
N-Nitrosodimethylamine	ND	2.0	ng/l	1	11/07/23	

DDCDs - Isotono Dilution I CMSMS

PPCPs - Isotope Dilution LCMS	SMS					
Method: EPA 1694M		Instr: LCMS	503			
Batch ID: W3K0187	Preparation: _NONE (LC)	Prepared:	11/02/23 10	:58		Analyst: JNA
Acetaminophen	ND	5.0	ng/l	1	11/03/23	
Amoxicillin	ND	20	ng/l	1	11/03/23	
Atenolol	ND	4.0	ng/l	1	11/03/23	
Atorvastatin	ND	4.0	ng/l	1	11/03/23	
Caffeine	ND	4.0	ng/l	1	11/03/23	
Carbamazepine	290	4.0	ng/l	1	11/03/23	
Cotinine	ND	8.0	ng/l	1	11/03/23	
Diazepam	ND	4.0	ng/l	1	11/03/23	
Fluoxetine	ND	4.0	ng/l	1	11/03/23	
Meprobamate		4.0	ng/l	1	11/03/23	
Methadone	ND	4.0	ng/l	1	11/03/23	
Sulfamethoxazole	62	4.0	ng/l	1	11/03/23	
TCPP	ND	50	ng/l	1	11/03/23	
Trimethoprim	ND	4.0	ng/l	1	11/03/23	

Surrogate(s)

3J31003 Page 6 of 19

FINAL REPORT

Cleath-Harris Geologists, Inc. 75 Zaca Lane, Suite 110 San Luis Obispo, CA 93401

TDCPP

3J31003

Project Number: Los Osos CEC Monitoring

Project Manager: Spencer Harris

Reported:

01/12/2024 10:27

(Continued)

29	ampie Results							(Oomanada
Sample:	FW6 (24A)				Sample	d: 10/30)/23 11:45 b	y I.Pittsillide
	3J31003-02 (Water)							(Continued
Analyte	, ,	Result		MRL	Units	Dil	Analyzed	Qualifie
PCPs - Iso	tope Dilution LCMSMS	(Continued)						
Method: E	EPA 1694M			Instr: LCMS	503			
Batch ID): W3K0187	Preparation: _NONE (LC)		Prepared: 1	11/02/23 10	:58		Analyst: JNA
Acetamino	•		Conc: 2380	20-500			11/03/23	
Amoxicillin	n - d4	51%	Conc: 2560	20-500			11/03/23	
Atenolol-d	17		Conc: 504	20-500			11/03/23	
Caffeine-1	13C3	64%	Conc: 127	20-500			11/03/23	
Carbamaz	zepine- 13C2, d2	103%	Conc: 41.1	20-500			11/03/23	
Cotinine-d	d3		Conc: 246	20-500			11/03/23	
Diazepam	n-d5		Conc: 2020	20-500			11/03/23	
Fluoxetine	9-d5	96%	Conc: 192	20-500			11/03/23	
Methadon	ne-d3	99%	Conc: 39.5	20-500			11/03/23	
Sulfameth	noxazole-d4	107%	Conc: 213	20-500			11/03/23	
TCPP-d18	8	104%	Conc: 2080	20-500			11/03/23	
Trimethop	orim-d9	71%	Conc: 141	20-500			11/03/23	
Method: E	EPA 1694M			Instr: LCMS	503			
Batch ID): W3K0194	Preparation: _NONE (LC)		Prepared: 1	11/02/23 11	:14		Analyst: JNA
17-b-Estra	adiol	ND		4.0	ng/l	1	11/04/23	
Ibuprofen		ND		4.0	ng/l	1	11/04/23	
Sucralose	e	16000		20	ng/l	1	11/04/23	E-0
Surrogate(s)								
				20-500			11/04/23	
lbuprofen-		97%		20-500			11/04/23	
Sucralose	9 - d6	68%	Conc: 684	20-500			11/04/23	
Method: E	EPA 1694M			Instr: LCMS	503			
Batch ID): W3K0195	Preparation: _NONE (LC)		Prepared: 1	11/02/23 11	:03		Analyst: rjr
17-a-Ethyr	nylestradiol	ND		20	ng/l	1	11/04/23	R-0
Bisphenol	I A	ND		10	ng/l	1	11/04/23	
Diclofenac	C	ND		4.0	ng/l	1	11/04/23	
Estrone		ND		4.0	ng/l	1	11/04/23	
Gemfibroz	zil	ND		4.0	ng/l	1	11/04/23	
lopromide	•	ND		4.0	ng/l	1	11/04/23	
Naproxen		ND		4.0	ng/l	1	11/04/23	
Phenytoir	n (Dilantin)	21		4.0	ng/l	1	11/04/23	
Primidone	e	140		4.0	ng/l	1	11/04/23	
Primidone Progestero	-			4.0 4.0	ng/l ng/l	1 1	11/04/23 11/04/23	

50

ng/l

11/04/23

Page 7 of 19

FINAL REPORT

Cleath-Harris Geologists, Inc. 75 Zaca Lane, Suite 110 San Luis Obispo, CA 93401

Sample:

Project Number: Los Osos CEC Monitoring

Reported:

(Continued)

01/12/2024 10:27

Sample Results FW6 (24A)

3J31003-02 (Water)

(Continued)

Sampled: 10/30/23 11:45 by I.Pittsillides

Project Manager: Spencer Harris

Analyte	Result		MRL	Units	Dil	Analyzed	Qualifier
PPCPs - Isotope Dilution LCMSN	AS (Continued)						
Method: EPA 1694M			Instr: LCMS	03			
Batch ID: W3K0195	Preparation: _NONE (LC)		Prepared: 1	1/02/23 11	:03		Analyst: rjr
Testosterone	ND		4.0	ng/l	1	11/04/23	
Triclosan	ND		8.0	ng/l	1	11/04/23	
Surrogate(s)							
17-a-Ethynylestradiol-d4	106%	Conc: 213	20-500			11/04/23	
Bisphenol A-d16	115%	Conc: 230	20-500			11/04/23	
Gemfibrozil-d6	122%	Conc: 122	20-500			11/04/23	
lopromide-d3	44%	Conc: 87.7	20-500			11/04/23	
Naproxen-d3	99%	Conc: 198	20-500			11/04/23	
Phenytoin-d10	108%	Conc: 215	20-500			11/04/23	
Primidone-d5	28%	Conc: 56.0	20-500			11/04/23	
Progesterone-d9	107%	Conc: 213	20-500			11/04/23	
Salicylic Acid-d4	75%	Conc: 373	20-500			11/04/23	
TDCPP-d15	94%	Conc: 1890	20-500			11/04/23	
Testosterone-d3	93%	Conc: 187	20-500			11/04/23	
Triclosan-d3	99%	Conc: 396	20-500			11/04/23	

Sample Results FW6 (24A)

Sample:

(Continued)

Sampled: 10/30/23 11:45 by I.Pittsillides

3J31003-02RE1 (Water)

Analyte	Result		MRL	Units	Dil	Analyzed	Qualifier
PPCPs - Isotope Dilution LCMSM	S						
Method: EPA 1694M			Instr: LCMS	03			
Batch ID: W3K0187	Preparation: _NONE (LC)		Prepared: 1	11/02/23 10	:58		Analyst: JNA
DEET	6.2		4.0	ng/l	1	11/06/23	
TCEP	67		10	ng/l	1	11/06/23	
Surrogate(s)							
DEET-d7	97%	Conc: 19.4	20-500			11/06/23	
TCEP-d12	107%	Conc: 427	20-500			11/06/23	

FINAL REPORT

Cleath-Harris Geologists, Inc. 75 Zaca Lane, Suite 110 San Luis Obispo, CA 93401

Project Number: Los Osos CEC Monitoring

Project Manager: Spencer Harris

Reported:

01/12/2024 10:27

Ouglity Control Regults

Quality Control Res	ults									
Conventional Chemistry/Physical Para	meters by APHA	A/EPA/ASTN	И Methods	5						
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
Batch: W3J2577 - SM 5910B										
Blank (W3J2577-BLK1) UV 254	ND	0.009	Prep 1/cm	ared & An	alyzed: 1	0/31/2	3			
LCS (W3J2577-BS1)			Dron	ared & An	alvzod: 1	0/31/2	2			
UV 254	0.088	0.009	1/cm	0.0880	aiyzca. i		90-110			
Duplicate (W3J2577-DUP1) UV 254	Source: 3J20 (017-01 0.009		ared & An		0/31/2	3	0	10	
Dunlicate (M212577 DUD2)	Source: 3J200	017 14	Duan	arad Pi Am	aluzadi 1	0/21/2	5			
Duplicate (W3J2577-DUP2) UV 254		0.009	1/cm	ared & An	0.023	0/31/2	3	0	10	
Batch: W3J2602 - EPA 353.2										
Blank (W3J2602-BLK1)			Prep	ared & An	alyzed: 1	0/31/2	3			
Nitrate as N	ND	0.15	mg/l		-					
LCS (W3J2602-BS1)			Prep	ared & An	alyzed: 1					
Nitrate as N	1.07	0.15	mg/l	1.00		107	90-110			
Matrix Spike (W3J2602-MS1) Nitrate as N		062-15 0.15	Prep mg/l	2.00	alyzed: 1 6.39		3 90-110			
Matrix Spike (W3J2602-MS2) Nitrate as N		065-05 0.15	Prep mg/l	pared & An 2.00			3 90-110			
Matrix Spike Dup (W3J2602-MSD1) Nitrate as N		062-15 0.15	Prep mg/l	2.00			3 90-110	0.6	20	
Matrix Spike Dup (W3J2602-MSD2) Nitrate as N	Source: 3J310	065-05 0.15	Prep mg/l	pared & An	alyzed: 1 5.29			0.1	20	
Batch: W3K0053 - SM 5310B										
Blank (W3K0053-BLK1) Total Organic Carbon (TOC)	ND	0.30	Prepared mg/l	l: 11/01/23	Analyze	ed: 11/0	02/23			
LCS (W3K0053-BS1) Total Organic Carbon (TOC)	0.953	0.30	Prepared mg/l	l: 11/01/23 1.00	Analyze		02/23 85-115			
Matrix Spike (W3K0053-MS1) Total Organic Carbon (TOC)		017-05 0.30	Prepared mg/l	l: 11/01/23 5.00	Analyze 0.889		02/23 76-115			MS-01
Matrix Spike Dup (W3K0053-MSD1)	Source: 3J200		Prepared	l: 11/01/23						
Total Organic Carbon (TOC)	6.83	0.30	mg/l	5.00	0.889	119	76-115	1	20	MS-01
Batch: W3K0227 - SM 2510B										
Blank (W3K0227-BLK1) Specific Conductance (EC)		2.0	Prep umhos/cm	ared & An	alyzed: 1	1/02/2	3			
LCS (W3K0227-BS1) Specific Conductance (EC)	437	2.0	Prep umhos/cm	pared & An	alyzed: 1		3 95-105			
Duplicate (W3K0227-DUP1) Specific Conductance (EC)	Source: 3J310	040-01	Prep umhos/cm	ared & An	alyzed: 1 3210	1/02/2	3	0.8	5	
Batch: W3K0431 - EPA 350.1										
Datcii. W3NU43 i - EPA 33U. i										

FINAL REPORT

Cleath-Harris Geologists, Inc. 75 Zaca Lane, Suite 110 San Luis Obispo, CA 93401 **Project Number:** Los Osos CEC Monitoring

Project Manager: Spencer Harris

Reported:

01/12/2024 10:27

Quality Control Results

Conventional Chemistry/Physical Para	meters by APHA/EP	A/AST	M Methods	(Continue	d)					
, , , , , , , , , , , , , , , , , , ,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
Batch: W3K0431 - EPA 350.1 (Continue	d)									
Blank (W3K0431-BLK1)			Prepared:	11/06/23	Analyze	d: 11/0	08/23			
Ammonia as N	ND	0.10	mg/l							
Blank (W3K0431-BLK2)			Prepared:	11/06/23	Analyze	d: 11/0	08/23			
Ammonia as N	ND	0.10	mg/l		-					
LCS (W3K0431-BS1)			Prepared:	11/06/23	Analyze	d: 11/0	08/23			
Ammonia as N	0.250	0.10	mg/l	0.250	-	100	90-110			
LCS (W3K0431-BS2)			Prepared:	11/06/23	Analyze	d: 11/0	08/23			
Ammonia as N	0.244	0.10	mg/l	0.250	-		90-110			
Matrix Spike (W3K0431-MS1)	Source: 3J20017-	14	Prepared:	11/06/23	Analyze	d: 11/0	08/23			
Ammonia as N	0.538	0.10	mg/l	0.250	0.302	94	90-110			
Matrix Spike (W3K0431-MS2)	Source: 3J31003-	02	Prepared:	11/06/23	Analyze	d: 11/0	08/23			
Ammonia as N	0.256	0.10	mg/l	0.250	ND	102	90-110			
Matrix Spike Dup (W3K0431-MSD1)	Source: 3J20017-	14	Prepared:	11/06/23	Analyze	d: 11/0	08/23			
Ammonia as N	0.536	0.10	mg/l	0.250	0.302	93	90-110	0.5	15	
Matrix Spike Dup (W3K0431-MSD2)	Source: 3J31003-	02	Prepared:	11/06/23	Analyze	d: 11/0	08/23			
Ammonia as N	0.259	0.10	mg/l	0.250	ND	104	90-110	1	15	
Quality Control Resu	ults								(Co	ontinued
Nitrosamines by isotopic dilution GC/	MS CI Mode									
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
Satch: W3K0265 - EPA 1625B										
Blank (W3K0265-BLK1)				11/03/23	Analyze	d: 11/0	07/23			
N-Nitrosodimethylamine	ND	2.0	ng/l							
LCS (W3K0265-BS1)			Prepared:	11/03/23	Analyze	d: 11/0	07/23			
N-Nitrosodimethylamine	2.49	2.0	ng/l	2.00		124	50-150			
LCS Dup (W3K0265-BSD1)			Prepared:	11/03/23	Analyze	d: 11/0	07/23			
N-Nitrosodimethylamine	2.77	2.0	ng/l	2.00	_		50-150	11	50	

FINAL REPORT

Cleath-Harris Geologists, Inc. 75 Zaca Lane, Suite 110 San Luis Obispo, CA 93401

3J31003

Project Number: Los Osos CEC Monitoring

Project Manager: Spencer Harris

Reported:

01/12/2024 10:27

Quality Control Results

(Continued)

Page 11 of 19

PPCPs - Isotope Dilution LCMSM	IS								
Acches	D It	MDI	11.5	Spike	Source	0/ DEC	%REC	RPD	0 110
Analyte Batch: W3K0187 - EPA 1694M	Result	MRL	Units	Level	Result	%REC	Limits	RPD Limit	Qualifie
			Duamana	J. 11 (02 (22	A	.d. 11/	12/22		
Blank (W3K0187-BLK1) Acetaminophen	ND	5.0	ng/l	d: 11/02/23	Anaiyze	ea: 11/C	J3/23		
Amoxicillin	ND	20	ng/l						
Atenolol	ND	4.0	ng/l						
Atorvastatin	ND	4.0	ng/l						
Caffeine	ND	4.0	ng/l						
Carbamazepine	ND	4.0	ng/l						
Cotinine	ND	8.0	ng/l						
Diazepam	ND	4.0	ng/l						
Fluoxetine	ND	4.0	ng/l						
Meprobamate	ND	4.0	ng/l						
Methadone	ND	4.0	ng/l						
Sulfamethoxazole	ND	4.0	ng/l						
TCPP	ND	50	ng/l						
Trimethoprim	ND	4.0	ng/l						
Surrogate(s) Acetaminophen-d4			ng/l	3000		92	20-500		
Amoxicillin-d4			ng/l	5000		90	20-500		
Atenolol-d7			ng/l	400		108	20-500		
Caffeine-13C3			ng/l	200		86	20-500		
Carbamazepine- 13C2, d2			ng/l	40.0		85	20-500		
Cotinine-d3			ng/l	200		108	20-500		
Diazepam-d5			ng/l	2000		105	20-500		
Fluoxetine-d5			ng/l	200		90	20-500		
Methadone-d3			ng/l	40.0		95	20-500		
Sulfamethoxazole-d4			ng/l	200		70	20-500		
TCPP-d18	2100		ng/l	2000		105	20-500		
Trimethoprim-d9	233		ng/l	200		117	20-500		
Blank (W3K0187-BLK2)			Dronaro	d: 11/02/23	Analyza	d. 11/0	16/23		
DEET	ND	4.0	ng/l	u. 11/02/23	Allalyze	u. 11/0	JU/ 23		QC-
TCEP	ND	10	ng/l						QC-
Surrogate(s) DEET-d7			ng/l	20.0		102	20-500		QC-
TCEP-d12			ng/l	400		92	20-500		QC-
LCS (W3K0187-BS1)			Dronaro	d: 11/02/23	Analyza	d. 11/0	13/23		
Acetaminophen	49.1	5.0	ng/l	50.0	AllalyZe	98	50-150		
Amoxicillin	233	20	ng/l	200		116	50-150		
Atenolol	35.1	4.0	ng/l	40.0		88	50-150		
Atorvastatin	36.2	4.0	ng/l	40.0		91	50-150		
Caffeine	41.3	4.0	ng/l	40.0		103	50-150		

FINAL REPORT

Cleath-Harris Geologists, Inc. 75 Zaca Lane, Suite 110 San Luis Obispo, CA 93401 **Project Number:** Los Osos CEC Monitoring

Project Manager: Spencer Harris

Reported:

01/12/2024 10:27

Quality Control Results

PPCPs - Isotope Dilution LCMSMS	(Continued)									
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
atch: W3K0187 - EPA 1694M (Cont									-	
LCS (W3K0187-BS1)			Prepare	d: 11/02/2	3 Analyz	ed: 11/0	03/23			
Carbamazepine	39.2	4.0	ng/l	40.0		98	50-150			
Cotinine	75.6	8.0	ng/l	80.0		94	50-150			
Diazepam	38.3	4.0	ng/l	40.0		96	50-150			
Fluoxetine	39.1	4.0	ng/l	40.0		98	50-150			
Meprobamate	36.5	4.0	ng/l	40.0		91	50-150			
Methadone	39.6	4.0	ng/l	40.0		99	50-150			
Sulfamethoxazole	44.5	4.0	ng/l	40.0		111	50-150			
TCPP	442	50	ng/l	500		88	50-150			
Trimethoprim	44.4	4.0	ng/l	40.0		111	50-150			
Surrogate(s)										
Acetaminophen-d4	2610		ng/l	3000		87	20-500			
Amoxicillin-d4	4770		ng/l	5000		95	20-500			
Atenolol-d7	459		ng/l	400		115	20-500			
Caffeine-13C3			ng/l	200		73	20-500			
Carbamazepine- 13C2, d2	36.0		ng/l	40.0		90	20-500			
Cotinine-d3	229		ng/l	200		115	20-500			
Diazepam-d5			ng/l	2000		98	20-500			
Fluoxetine-d5	199		ng/l	200		99	20-500			
Methadone-d3	40.5		ng/l	40.0		101	20-500			
Sulfamethoxazole-d4	164		ng/l	200		82	20-500			
TCPP-d18	2150		ng/l	2000		108	20-500			
Trimethoprim-d9	165		ng/l	200		82	20-500			
-CS (W3K0187-BS2)			Prepare	d: 11/02/2	3 Analyz	ed: 11/0	06/23			
DEET	41.0	4.0	ng/l	40.0		103	50-150			QC-
TCEP	98.3	10	ng/l	100		98	50-150			QC-
Surrogate(s)										
DEET-d7			ng/l	20.0		80	20-500			QC-
TCEP-d12	487		ng/l	400		122	20-500			QC-
Matrix Spike (W3K0187-MS1)	Source: 3K0		_	d: 11/02/2	_					
Acetaminophen		5.0	ng/l	50.0	ND	97	50-150			
Amoxicillin		20	ng/l	200	ND	126	50-150			
Atenolol	37.8	4.0	ng/l	40.0	ND	95	50-150			
Atorvastatin	32.6	4.0	ng/l	40.0	ND	81	50-150			
Caffeine	41.0	4.0	ng/l	40.0	4.91	90	50-150			
Carbamazepine	57.2	4.0	ng/l	40.0	ND	143	50-150			
Cotinine		8.0	ng/l	80.0	ND	95	50-150			
Diazepam	43.0	4.0	ng/l	40.0	ND	107	50-150			
Fluoxetine	41.3	4.0	ng/l	40.0	ND	103	50-150			
Meprobamate	35.1	4.0	ng/l	40.0	ND	88	50-150			

FINAL REPORT

Cleath-Harris Geologists, Inc. 75 Zaca Lane, Suite 110 San Luis Obispo, CA 93401 Project Number: Los Osos CEC Monitoring

Project Manager: Spencer Harris

Reported:

01/12/2024 10:27

Ouality Control Results

PPCPs - Isotope Dilution LCMSMS (Co	ontinued)									
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
Batch: W3K0187 - EPA 1694M (Continu	ed)									
Matrix Spike (W3K0187-MS1)	Source: 3K0			d: 11/02/23	_					
Methadone		4.0	ng/l	40.0	ND	106	50-150			
Sulfamethoxazole		4.0	ng/l	40.0	ND	110	50-150			
TCPP-	** *	50	ng/l	500	ND	94	50-150			
Trimethoprim		4.0	ng/l	40.0	ND	90	50-150			
Surrogate(s) Acetaminophen-d4			ng/l	3000		69	20-500			
Amoxicillin-d4	1320		ng/l	5000		26	20-500			
Atenolol-d7	580		ng/l	400		145	20-500			
Caffeine-13C3	146		ng/l	200		73	20-500			
Carbamazepine- 13C2, d2	29.7		ng/l	40.0		74	20-500			
Cotinine-d3			ng/l	200		133	20-500			
Diazepam-d5	1860		ng/l	2000		93	20-500			
Fluoxetine-d5	217		ng/l	200		109	20-500			
Methadone-d3	42.9		ng/l	40.0		107	20-500			
Sulfamethoxazole-d4	165		ng/l	200		83	20-500			
TCPP-d18	1990		ng/l	2000		99	20-500			
Trimethoprim-d9	196		ng/l	200		98	20-500			
Matrix Spike (W3K0187-MS2)	Source: 3K0	2020-01RE1	Prenare	d: 11/02/23	. Δnalvze	-d∙ 11/0	16/23			
DEET		4.0	ng/l	40.0	8.27	72	50-150			QC-
TCEP		10	ng/l	100	ND	94	50-150			QC-
Gurrogate(s) DEET-d7	17.5		ng/l	20.0		87	20-500			QC
TCEP-d12			ng/l	400		94	20-500			QC:
Matrix Spike Dup (W3K0187-MSD1)	Source: 3K0	2020 01	Droparo	d: 11/02/23	Analyz	.d. 11/	12/22			
Acetaminophen		5.0	ng/l	50.0	ND	102	50-150	5	30	
Amoxicillin		20	ng/l	200	ND	129	50-150	2	30	
Atenolol	36.4	4.0	ng/l	40.0	ND	91	50-150	4	30	
Atorvastatin	29.8	4.0	ng/l	40.0	ND	74	50-150	9	30	
Caffeine	45.4	4.0	ng/l	40.0	4.91	101	50-150	10	30	
Carbamazepine	39.5	4.0	ng/l	40.0	ND	99	50-150	37	30	R-0
Cotinine		8.0	ng/l	80.0	ND	100	50-150	5	30	
Diazepam	44.0	4.0	ng/l	40.0	ND	110	50-150	2	30	
Fluoxetine		4.0	ng/l	40.0	ND	98	50-150	5	30	
Meprobamate	30.0	4.0	ng/l	40.0	ND	75	50-150	16	30	
Methadone	39.3	4.0	ng/l	40.0	ND	98	50-150	7	30	
Sulfamethoxazole		4.0	ng/l	40.0	ND	93	50-150	17	30	
TCPP		50	ng/l	500	ND	86	50-150	10	30	
Trimethoprim	39.9	4.0	ng/l	40.0	ND	100	50-150	10	30	
Surrogate(s)										
Acetaminophen-d4	1850		ng/l	3000		62	20-500			

FINAL REPORT

Cleath-Harris Geologists, Inc. 75 Zaca Lane, Suite 110 San Luis Obispo, CA 93401 **Project Number:** Los Osos CEC Monitoring

Reported:

01/12/2024 10:27

Project Manager: Spencer Harris

Quality	C	onti	rol	F	Re	sul	ts	

PPCPs - Isotope Dilution LCMSMS (Co	,			Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
Batch: W3K0187 - EPA 1694M (Continu	ed)									
Matrix Spike Dup (W3K0187-MSD1)	Source: 3K0	2020-01	Prepare	d: 11/02/23	Analyze	ed: 11/0	03/23			
Surrogate(s) Amoxicillin-d4	1230		ng/l	5000		25	20-500			
Atenolol-d7			ng/l	400		162	20-500			
Caffeine-13C3	131		ng/l	200		66	20-500			
Carbamazepine- 13C2, d2	36.2		ng/l	40.0		90	20-500			
Cotinine-d3	273		ng/l	200		136	20-500			
Diazepam-d5	1730		ng/l	2000		87	20-500			
Fluoxetine-d5	233		ng/l	200		117	20-500			
Methadone-d3	46.1		ng/l	40.0		115	20-500			
Sulfamethoxazole-d4	174		ng/l	200		87	20-500			
TCPP-d18	1970		ng/l	2000		99	20-500			
Trimethoprim-d9	170		ng/l	200		85	20-500			
Matrix Spike Dup (W3K0187-MSD2)		2020-01RE1	Prepare	d: 11/02/23	Analyze	ed: 11/0	06/23			
DEET		4.0	ng/l	40.0	8.27	79	50-150	8	30	QC-
TCEP		10	ng/l	100	ND	90	50-150	5	30	QC-2
Surrogate(s) DEET-d7			ng/l	20.0		80	20-500			QC-2
TCEP-d12			ng/l	400		105	20-500			QC-
Batch: W3K0194 - EPA 1694M										
Blank (W3K0194-EFK 1094W			Dиомоно	d: 11/02/23	Analyza	.d. 11/	14/22			
17-b-Estradiol	ND	4.0	ng/l	u. 11/02/23	Allalyze	a. 11/0	J4/23			
lbuprofen	ND	4.0	ng/l							
Sucralose	ND	20	ng/l							
Surrogate(s)										
17-b-Estradiol-d3			ng/l	200		92	20-500			
Ibuprofen-d3			ng/l	200		109	20-500			
Sucralose-d6			ng/l	1000		145	20-500			
LCS (W3K0194-BS1)	00.4	4.0		d: 11/02/23	Analyze					
17-a-Estradiol	38.4	4.0	ng/l	40.0		96	50-150			
17-b-Estradiol	· · · -	4.0	ng/l	40.0		93	50-150			
Ibuprofen		4.0	ng/l	40.0		94	50-150			
Sucralose	201	20	ng/l	200		100	50-150			
Surrogate(s) 17-b-Estradiol-d3	198		ng/l	200		99	20-500			
lbuprofen-d3	202		ng/l	200		101	20-500			
Sucralose-d6	1300		ng/l	1000		130	20-500			
Matrix Spike (W3K0194-MS1)	Source: 3K0	2020-01	Prepare	d: 11/02/23	Analyze	ed: 11/0	04/23			
17-b-Estradiol	40.7	4.0	ng/l	40.0	ND	102	50-150			
Ibuprofen	41.2	4.0	ng/l	40.0	ND	103	50-150			
Sucralose	379	20	ng/l	200	181	99	50-150			
3J31003									Pa	ge 14 of

FINAL REPORT

Cleath-Harris Geologists, Inc. 75 Zaca Lane, Suite 110 San Luis Obispo, CA 93401

Project Number: Los Osos CEC Monitoring

Project Manager: Spencer Harris

Reported:

01/12/2024 10:27

Quality Control Res										
PPCPs - Isotope Dilution LCMSMS (Co	ontinuea)			Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD		Qualifie
Batch: W3K0194 - EPA 1694M (Continu	ed)									
Matrix Spike (W3K0194-MS1)	Source: 3K0	2020-01	Prepare	d: 11/02/2	3 Analyze	ed: 11/0	04/23			
Surrogate(s) 17-b-Estradiol-d3	209		ng/l	200		105	20-500			
Ibuprofen-d3			ng/l	200		95	20-500			
Sucralose-d6	2010		ng/l	1000		201	20-500			
Matrix Spike Dup (W3K0194-MSD1)	Source: 3K0	2020-01	Prenare	d: 11/02/2	3 Analyza	.d∙ 11/0	14/23			
17-b-Estradiol		4.0	ng/l	40.0	ND	101	50-150	1	30	
lbuprofen	37.0	4.0	ng/l	40.0	ND	92	50-150	11	30	
Sucralose		20	ng/l	200	181	94	50-150	3	30	
Surrogate(s) 17-b-Estradiol-d3			ng/l	200		108	20-500			
Ibuprofen-d3			ng/l	200		93	20-500			
Sucralose-d6	2130		ng/l	1000		213	20-500			
Batch: W3K0195 - EPA 1694M										
Blank (W3K0195-BLK1)			Dronaro	d: 11/02/2	R Analyza	.d. 11/	14/23			
17-a-Ethynylestradiol	ND	4.0	ng/l	u. 11/02/2.	Allulyzo	.u. 11/)-1, <u>L</u> J			
Bisphenol A	ND	10	ng/l							
Diclofenac	ND	4.0	ng/l							
Estrone	ND	4.0	ng/l							
Gemfibrozil		4.0	ng/l							
Iopromide		4.0	ng/l							
Naproxen		4.0	ng/l							
Phenytoin (Dilantin)		4.0	ng/l							
Primidone		4.0	ng/l							
Progesterone		4.0	ng/l							
Salicylic Acid		100	ng/l							
TDCPP Testosterone		50 4.0	ng/l ng/l							
Triclosan	ND	8.0	ng/l							
Surrogate(s)										
17-a-Ethynylestradiol-d4	236		ng/l	200		118	20-500			
Bisphenol A-d16	230		ng/l	200		115	20-500			
Gemfibrozil-d6	101		ng/l	100		101	20-500			
lopromide-d3	140		ng/l	200		70	20-500			
Naproxen-d3	191		ng/l	200		96	20-500			
Phenytoin-d10			ng/l	200		97	20-500			
Primidone-d5			ng/l	200		77	20-500			
Progesterone-d9			ng/l	200		100	20-500			
Salicylic Acid-d4	496		ng/l	500		99	20-500			
TDCPP-d15	7000		ng/l	2000		100	20-500			
Testosterone-d3	199		ng/l	200		100	20-500			

FINAL REPORT

Cleath-Harris Geologists, Inc. 75 Zaca Lane, Suite 110 San Luis Obispo, CA 93401 Project Number: Los Osos CEC Monitoring

Project Manager: Spencer Harris

Reported:

01/12/2024 10:27

Quality Control Results

PPCPs - Isotope Dilution LCMSMS	(Continued)									
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
Batch: W3K0195 - EPA 1694M (Con	tinued)									
Blank (W3K0195-BLK1)			Prepare	d: 11/02/2	3 Analyz	ed: 11/0	04/23			
Surrogate(s) Triclosan-d3	417		ng/l	400		104	20-500			
LCS (W3K0195-BS1)			Prepare	d: 11/02/2	3 Analyz	ed: 11/0	04/23			
17-a-Ethynylestradiol	35.0	4.0	ng/l	40.0	_	88	50-150			
Bisphenol A	90.4	10	ng/l	100		90	50-150			
Diclofenac	36.9	4.0	ng/l	40.0		92	50-150			
Estrone	37.2	4.0	ng/l	40.0		93	50-150			
Gemfibrozil	42.1	4.0	ng/l	40.0		105	50-150			
lopromide		4.0	ng/l	40.0		98	50-150			
Naproxen	40.3	4.0	ng/l	40.0		101	50-150			
Phenytoin (Dilantin)	38.0	4.0	ng/l	40.0		95	50-150			
Primidone	37.5	4.0	ng/l	40.0		94	50-150			
Progesterone	35.7	4.0	ng/l	40.0		89	50-150			
Salicylic Acid	964	100	ng/l	1000		96	50-150			
TDCPP	467	50	ng/l	500		93	50-150			
Testosterone	42.1	4.0	ng/l	40.0		105	50-150			
Triclosan	75.3	8.0	ng/l	80.0		94	50-150			
Surrogate(s) 17-a-Ethynylestradiol-d4			ng/l	200		118	20-500			
Bisphenol A-d16	247		ng/l	200		123	20-500			
Gemfibrozil-d6	103		ng/l	100		103	20-500			
lopromide-d3	148		ng/l	200		74	20-500			
Naproxen-d3	206		ng/l	200		103	20-500			
Phenytoin-d10			ng/l	200		100	20-500			
Primidone-d5			ng/l	200		82	20-500			
Progesterone-d9	230		ng/l	200		115	20-500			
Salicylic Acid-d4			ng/l	500		105	20-500			
TDCPP-d15	2130		ng/l	2000		107	20-500			
Testosterone-d3			ng/l	200		86	20-500			
Triclosan-d3			ng/l	400		122	20-500			
Matrix Spike (W3K0195-MS1)	Source: 3K0	2020-01	Prepare	d: 11/02/2	3 Analyzo	ed: 11/0	04/23			
17-a-Ethynylestradiol		4.0	ng/l	40.0	ND	103	50-150			
Bisphenol A		10	ng/l	100	10.6	81	50-150			
Diclofenac		4.0	ng/l	40.0	ND	98	50-150			
Estrone		4.0	ng/l	40.0	ND	96	50-150			
Gemfibrozil	38.7	4.0	ng/l	40.0	ND	97	50-150			
lopromide	39.8	4.0	ng/l	40.0	ND	100	50-150			
Naproxen	34.2	4.0	ng/l	40.0	ND	86	50-150			
Phenytoin (Dilantin)	39.7	4.0	ng/l	40.0	ND	99	50-150			

FINAL REPORT

Cleath-Harris Geologists, Inc. 75 Zaca Lane, Suite 110 San Luis Obispo, CA 93401 Project Number: Los Osos CEC Monitoring

Project Manager: Spencer Harris

Reported:

01/12/2024 10:27

Quality Control Results

PPCPs - Isotope Dilution LCMSMS (Co	ontinued)									
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
atch: W3K0195 - EPA 1694M (Continu	ied)									
Matrix Spike (W3K0195-MS1)	Source: 3K0			d: 11/02/2	_					
Primidone	42.5	4.0	ng/l	40.0	ND	106	50-150			
Progesterone		4.0	ng/l	40.0	ND	100	50-150			
Salicylic Acid		100	ng/l	1000	ND	98	50-150			
TDCPP	** *	50	ng/l	500	ND	94	50-150			
Testosterone		4.0	ng/l	40.0	ND	99	50-150			
Triclosan		8.0	ng/l	80.0	ND	103	50-150			
Surrogate(s) 17-a-Ethynylestradiol-d4			ng/l	200		109	20-500			
Bisphenol A-d16	265		ng/l	200		133	20-500			
Gemfibrozil-d6	114		ng/l	100		114	20-500			
lopromide-d3	138		ng/l	200		69	20-500			
Naproxen-d3	197		ng/l	200		99	20-500			
Phenytoin-d10			ng/l	200		96	20-500			
Primidone-d5	85.2		ng/l	200		43	20-500			
Progesterone-d9	210		ng/l	200		105	20-500			
Salicylic Acid-d4	455		ng/l	500		91	20-500			
TDCPP-d15	2040		ng/l	2000		102	20-500			
Testosterone-d3			ng/l	200		95	20-500			
Triclosan-d3	- 482		ng/l	400		121	20-500			
Matrix Spike Dup (W3K0195-MSD1)	Source: 3K0	2020-01	Prepare	d: 11/02/2	3 Analyze	ed: 11/0	04/23			
17-a-Ethynylestradiol	35.4	4.0	ng/l	40.0	ND	88	50-150	15	30	
Bisphenol A	85.6	10	ng/l	100	10.6	75	50-150	7	30	
Diclofenac	34.8	4.0	ng/l	40.0	ND	87	50-150	12	30	
Estrone		4.0	ng/l	40.0	ND	89	50-150	7	30	
Gemfibrozil	12.0	4.0	ng/l	40.0	ND	105	50-150	8	30	
lopromide	00.0	4.0	ng/l	40.0	ND	99	50-150	0.2	30	
Naproxen	38.1	4.0	ng/l	40.0	ND	95	50-150	11	30	
Phenytoin (Dilantin)	35.9	4.0	ng/l	40.0	ND	90	50-150	10	30	
Primidone		4.0	ng/l	40.0	ND	119	50-150	11	30	
Progesterone	36.7	4.0	ng/l	40.0	ND	92	50-150	9	30	
Salicylic Acid	982	100	ng/l	1000	ND	98	50-150	0.4	30	
TDCPP		50	ng/l	500	ND	88	50-150	7	30	
Testosterone		4.0	ng/l	40.0	ND	91	50-150	8	30	
Triclosan		8.0	ng/l	80.0	ND	113	50-150	9	30	
Surrogate(s) 17-a-Ethynylestradiol-d4			ng/l	200		109	20-500			
Bisphenol A-d16	248		ng/l	200		124	20-500			
Gemfibrozil-d6	92.9		ng/l	100		93	20-500			

FINAL REPORT

Cleath-Harris Geologists, Inc. 75 Zaca Lane, Suite 110 San Luis Obispo, CA 93401 **Project Number:** Los Osos CEC Monitoring

Reported:

01/12/2024 10:27

Project Manager: Spencer Harris

Quality Control Results

PPCPs - Isotope Dilution LCMSMS (Co	ontinued)									
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W3K0195 - EPA 1694M (Continu	ed)									
Matrix Spike Dup (W3K0195-MSD1)	Source: 3K02	2020-01	Prepare	d: 11/02/2	3 Analyze	d: 11/0	04/23			
Surrogate(s) Naproxen-d3			ng/l	200		98	20-500			
Phenytoin-d10	197		ng/l	200		99	20-500			
Primidone-d5	81.0		ng/l	200		41	20-500			
Progesterone-d9	216		ng/l	200		108	20-500			
Salicylic Acid-d4	442		ng/l	500		88	20-500			
TDCPP-d15	1960		ng/l	2000		98	20-500			
Testosterone-d3	184		ng/l	200		92	20-500			
Triclosan-d3	413		ng/l	400		103	20-500			

FINAL REPORT

Cleath-Harris Geologists, Inc. 75 Zaca Lane, Suite 110 San Luis Obispo, CA 93401 Project Number: Los Osos CEC Monitoring

Project Manager: Spencer Harris

Reported:

01/12/2024 10:27

Notes and Definitions

Item

Definition

E-01	The concentration indicated for this analyte is an estimated value above the calibration range.
MS-01	The spike recovery for this QC sample is outside of established control limits possibly due to sample matrix interference.
QC-2	This QC sample was reanalyzed to complement samples that require re-analysis on different date. See analysis date.
R-01	The MDL and/or MRL for this analyte has been raised to account for matrix interference.
R-02	The RPD was outside of QC acceptance limits due to possible matrix interference.
%REC	Percent Recovery
Dil	Dilution
MRL	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ)
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
RPD	Relative Percent Difference

Source Sample that was matrix spiked or duplicated.

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

APPENDIX D

Field Methods

Groundwater Level Measurement Procedures for the Los Osos Basin Plan Groundwater Monitoring Program

Introduction

This document establishes procedures for measuring and recording groundwater levels for the Los Osos Basin Plan (LOBP) Groundwater Monitoring Program, and describes various methods used for collecting meaningful groundwater data.

Static groundwater levels obtained for the LOBP Groundwater Monitoring Program are determined by measuring the distance to water in a non-pumping well from a reference point that has been referenced to sea level. Subtracting the distance to water from the elevation of the reference point determines groundwater surface elevations above or below sea level. This is represented by the following equation:

$$E_{GW} = E_{RP} - D$$

Where:

 E_{GW} = Elevation of groundwater above mean sea level (feet) E_{RP} = Elevation above sea level at reference point (feet)

D = Depth to water (feet)

References

Procedures for obtaining and reporting water level data for the LOBP Groundwater Monitoring Program are based on a review of the following documents.

- State of California, Department of Water Resources, 2010, Groundwater Elevation Monitoring
 Guidelines, prepared for use in the California Statewide Groundwater Elevation Monitoring
 (CASGEM) program, December.
 https://water.ca.gov/Programs/Groundwater-Management/Groundwater-Elevation-Monitoring-CASGEM
- State of California, Department of Water Resources, 2014, Addendum to December 2010
 Groundwater Elevation Monitoring Guidelines for the Department of Water Resources'
 California Statewide Groundwater Elevation Monitoring (CASGEM) Program, October 2.
 https://water.ca.gov/Programs/Groundwater-Management/Groundwater-Elevation-Monitoring--CASGEM
- U.S. Geological Survey, 1977, *National Handbook of Recommended Methods for Water-Data Acquisition*, a Unites States contribution to the International Hydrological Program. https://pubs.usgs.gov/chapter11/
- U.S. Geological Survey, Office of Ground Water, 1997, Ground Water Procedure Document 1, Water-level measurement using graduated steel tape, draft stand-alone procedure document. http://pubs.usgs.gov/tm/1a1/pdf/GWPD1.pdf

- U.S. Geological Survey, Office of Ground Water, 1997, *Ground Water Procedure Document* 4, Water-level measurement using an electric tape, draft stand-alone procedure document. http://pubs.usgs.gov/tm/1a1/pdf/GWPD4.pdf
- U.S. Geological Survey, Office of Ground Water, 1997, Ground Water Procedure Document 13, Water-level measurement using an air line, draft stand-alone procedure document. http://pubs.usgs.gov/tm/1a1/pdf/GWPD13.pdf
- U.S. Geological Survey, 2001, *Introduction to Field Methods for Hydrologic and Environmental Studies*, Open-File Report 2001-50, 241 p. https://pubs.er.usgs.gov/publication/ofr0150

Well Information

Table 1 below lists important well information to be maintained in a well file or in a field notebook. Additional information that should be available to the person collecting water level data include a description of access to the property and the well, the presence and depth of cascading water, or downhole obstructions that could interfere with a sounding cable.

Table 1
Well File Information

Well Completion Report	Hydrologic Information	Additional Information to be Recorded				
Well name	Map showing basin boundaries and wells	Township, Range, and 1/4 1/4 Section				
Well Owner	Name of groundwater basin	Latitude and Longitude (Decimal degrees)				
Drilling Company	Description of aquifer	Assessor's Parcel Number				
Location map or sketch	Confined, unconfined, or mixed aquifers	Description of well head and sounding access				
Total depth	Pumping test data	Reference point elevations				
Perforation interval	Hydrographs	Well use and pumping schedule if known				
Casing diameter	Water quality data	Date monitoring began				
Date of well completion	Property access instructions/codes	Land use				

Reference Points and Reference Marks

Reference point (RP) elevations are the basis for determining groundwater elevations relative to sea level. The RP is generally that point on the well head that is the most convenient place to measure the water level in a well. In selecting an RP, an additional consideration is the ease of surveying either by Global Positioning System (GPS) or by leveling.

The RP must be clearly defined, well marked, and easily located. A description, sketch, and photograph of the point should be included in the well file. Additional Reference Marks (RMs) may be established near the wellhead on a permanent object. These additional RMs can serve as a benchmark by which the wellhead RP can be checked or re-surveyed if necessary. All RMs should be marked, sketched, photographed, and described in the well file.

All RPs for Groundwater Monitoring Program wells should be reported based on the same horizontal and vertical datum by a California licensed surveyor to the nearest tenth of one foot vertically, and the nearest one foot horizontally. The surveyor's report should be maintained in the project file.

In addition to the RP survey, the elevation of the ground surface adjacent to the well should also be measured and recorded in the well file. Because the ground surface adjacent to a well is rarely uniform, the average surface level should be estimated. This average ground surface elevation is referred to in the U.S.G.S. Procedural Document (GWPD-1, 1997) and DWR guidelines as the Land Surface Datum (LSD).

Water Level Data Collection

Prior to beginning the field work, the field technician should review each well file to determine which well owners require notification of the upcoming site visit, or which well pumps need to be turned off to allow for sufficient water level recovery. Because groundwater elevations are used to construct groundwater contour maps and to determine hydraulic gradients, the field technician should coordinate water level measurements to be collected within as short a period of time as practical. Any significant changes in groundwater conditions during monitoring events should be noted in the Annual Monitoring Report. For an individual well, the same measuring method and the same equipment should be used during each sampling event where practical.

A static water level should represent stable, non-pumping conditions at the well. When there is doubt about whether water levels in a well are continuing to recover following a pumping cycle, repeated measurements should be made. If an electric sounder is being used, it is possible to hold the sounder level at one point slightly above the known water level and wait for a signal that would indicate rising water. If applicable, the general schedule of pump operation should be determined and noted for active wells. If the well is capped but not vented, remove the cap and wait several minutes before measurement to allow water levels to equilibrate to atmospheric pressure.

When lowering a graduated steel tape (chalked tape) or electric tape in a well without a sounding tube in an equipped well, the tape should be played out slowly by hand to minimize the chance of the tape end becoming caught in a downhole obstruction. The tape should be held in such a way that any change in tension will be felt. When withdrawing a sounding tape, it should also be brought up slowly so that if an obstruction is encountered, tension can be relaxed so that the tape can be lowered again before attempting to withdraw it around the obstruction.

Despite all precautions, there is a small risk of measuring tapes becoming stuck in equipped wells without dedicated sounding tubes. If a tape becomes stuck, the equipment should be left on-site and re-checked after the well has gone through a few cycles of pumping, which can free the tape due to movement/vibration of the pump column. If the tape remains stuck, a pumping contractor will be needed to retrieve the equipment. A dedicated sounding tube may be installed by the pumping contractor at that time.

All water level measurements should be made to an accuracy of 0.01 feet. The field technician should make at least two measurements. If measurements of static levels do not agree to within 0.02 feet of each other, the technician should continue measurements until the reason for the disparity is determined, or the measurements are within 0.02 feet.

Record Keeping in the Field

The information recorded in the field is typically the only available reference for the conditions at the time of the monitoring event. During each monitoring event it is important to record any conditions at a well site and its vicinity that may affect groundwater levels, or the field technician's ability to obtain groundwater levels. Table 2 lists important information to record, however, additional information should be included when appropriate.

Table 2
Information Recorded at Each Well Site

Well name	Changes in land use	Presence of pump lubricating oil in well			
Name and organization of field technician	Changes in RP	Cascading water			
Date & time	Nearby wells in use	Equipment problems			
Measurement method used	Weather conditions	Physical changes in wellhead			
Sounder used	Recent pumping info	Comments			
Reference Point Description	Measurement correction(s)	Well status			

Measurement Techniques

Four standard methods of obtaining water levels are discussed below. The chosen method depends on site and downhole conditions, and the equipment limitations. In all monitoring situations, the procedures and equipment used should be documented in the field notes and in final reporting. Additional detail on methods of water level measurement is included in the reference documents.

Graduated Steel Tape

This method uses a graduated steel tape with a brass or stainless-steel weight attached to its end. The tape is graduated in feet. The approximate depth to water should be known prior to measurement.

- Estimate the anticipated static water level in the well from field conditions and historical information;
- Chalk the lower few feet of the tape by applying blue carpenter's chalk.
- Lower the tape to just below the estimated depth to water so that a few feet of the chalked portion of the tape is submerged. Be careful not to lower the tape beyond its chalked length.
- Hold the tape at the RP and record the tape position (this is the "hold" position and should be at an even foot);
- Withdraw the tape rapidly to the surface;

- Record the length of the wetted chalk mark on the graduated tape;
- Subtract the wetted chalk number from the "hold" position number and record this number in the "Depth to Water below RP" column;
- Perform a check by repeating the measurement using a different RP hold value;
- All data should be recorded to the nearest 0.01 foot;
- Disinfect the tape by wiping down the submerged portion of the tape with single-use, unscented disinfectant wipe, or let stand for one minute in a dilute chlorine bleach solution and dry with clean cloth.

The graduated steel tape is generally considered to be the most accurate method for measuring static water levels. Measuring water levels in wells with cascading water or with condensing water on the well casing causes potential errors, or can be impossible with a steel tape.

Electric Tape

An electric tape operates on the principle that an electric circuit is completed when two electrodes are submerged in water. Most electric tapes are mounted on a hand-cranked reel equipped with batteries and an ammeter, buzzer or light to indicate when the circuit is completed. Tapes are graduated in either one-foot intervals or in hundredths of feet depending on the manufacturer. Like graduated steel tapes, electric tapes are affixed with brass or stainless-steel weights.

- Check the circuitry of the tape before lowering the probe into the well by dipping the probe into water and observe if the ammeter needle or buzzer/light signals that the circuit is completed;
- Lower the probe slowly and carefully into the well until the signal indicates that the water surface has been reached;
- Place a finger or thumb on the tape at the RP when the water surface is reached;
- If the tape is graduated in one-foot intervals, partially withdraw the tape and measure the distance from the RP mark to the nearest one-foot mark to obtain the depth to water below the RP. If the tape is graduated in hundredths of a foot, simply record the depth at the RP mark as the depth to water below the RP;
- Make all readings using the same needle deflection point on the ammeter scale (if equipped) so that water levels will be consistent between measurements;
- Make check measurements until agreement shows the results to be reliable;
- All data should be recorded to the nearest 0.01 foot;
- Disinfect the tape by wiping down the submerged portion of the tape with single-use, unscented disinfectant wipe, or let stand for one minute in a dilute chlorine bleach solution and dry with clean cloth;
- Periodically check the tape for breaks in the insulation. Breaks can allow water to enter into the insulation creating electrical shorts that could result in false depth readings.

The electric tape may give slightly less accurate results than the graduated steel tape. Errors can result from signal "noise" in cascading water, breaks in the tape insulation, tape stretch, or missing tape at the location of a splice. All electric tapes should be calibrated semi-annually against a steel tape that is maintained in the office and used only for calibration.

Air Line

The air line method is usually used only in wells equipped with pumps. This method typically uses a 1/8 or 1/4-inch diameter, seamless copper tubing, brass tubing, stainless steel tubing, or galvanized pipe with a suitable pipe tee for connecting an altitude or pressure gage. Plastic (i.e. polyethylene) tubing may also be used, but is considered less desirable because it can develop leaks as it degrades. An air line must extend far enough below the water level that the lower end remains submerged during pumping of the well. The air line is connected to an altitude gage that reads directly in feet of water, or to a pressure gage that reads pressure in pounds per square inch (psi). The gage reading indicates the length of the submerged air line.

The formula for determining the depth to water below the RP is: $\mathbf{d} = \mathbf{k} - \mathbf{h}$ where $\mathbf{d} =$ depth to water; $\mathbf{k} =$ constant; and $\mathbf{h} =$ height of the water displaced from the air line. In wells where a pressure gage is used, \mathbf{h} is equal to 2.31 ft/psi multiplied by the gage reading. The constant value for \mathbf{k} is approximately equivalent to the length of the air line.

- Calibrate the air line by measuring an initial depth to water (d) below the RP with a graduated steel tape. Use a tire pump, air tank, or air compressor to pump compressed air into the air line until all the water is expelled from the line. When all the water is displaced from the line, record the stabilized gage reading (h). Add d to h to determine the constant value for k.
- To measure subsequent depths to water with the air line, expel all the water from the air line, subtract the gage reading (h) from the constant k, and record the result as depth to water (d) below the RP.

The air line method is not as accurate as a graduated steel tape or electric and is typically accurate to the nearest one foot at best. Errors can occur from leaky air lines, or when tubing becomes clogged with mineral deposits or bacterial growth. The air line method is not desirable for use in the Groundwater Monitoring Program.

Pressure Transducer

Electrical pressure transducers make it possible to collect frequent and long-term water level or pressure data from wells. These pressure-sensing devices, installed at a fixed depth in a well, sense the change in pressure against a membrane. The pressure changes occur in response to changes in the height of the water column in the well above the transducer membrane. To compensate for atmospheric changes, transducers may have vented cables or they can be used in conjunction with a barometric transducer that is installed in the same well or a nearby observation well above the water level.

Transducers are selected on the basis of expected water level fluctuation. The smallest range in water levels provides the greatest measurement resolution. Accuracy is generally 0.01 to 0.1 percent of the full-scale range.

Retrieving data in the field is typically accomplished by downloading data through a USB connection to a portable computer or data logger. A site visit to retrieve data should involve several steps designed to safeguard the stored data and the continued useful operation of the transducer:

- Inspect the wellhead and check that the transducer cable has not moved or slipped (the cable can be marked with a reference point that can be used to identify movement);
- Ensure that the instrument is operating properly;
- Measure and record the depth to water with a graduated steel or electric tape;
- Document the site visit, including all measurements and any problems;
- Retrieve the data and document the process;
- Review the retrieved data by viewing the file or plotting the original data;
- Recheck the operation of the transducer prior to disconnecting from the computer.

A field notebook with a checklist of steps and measurements should be used to record all field observations and the current data from the transducer. It provides a historical record of field activities. In the office, maintain a binder with field information similar to that recorded in the field notebook so that a general historical record is available and can be referred to before and after a field trip.

Quality Control

The field technician should compare water level measurements collected at each well with the available historical information to identify and resolve anomalous and potentially erroneous measurements prior to moving to the next well location. Pertinent information, such as insufficient recovery of a pumping well, proximity to a pumping well, falling water in the casing, and changes in the measurement method, sounding equipment, reference point, or groundwater conditions should be noted. Office review of field notes and measurements should also be performed by a second staff member.

Groundwater Sampling Procedures for the Los Osos Basin Plan Groundwater Monitoring Program

Introduction

This document establishes groundwater sampling procedures for the Los Osos Basin Plan (LOBP) Groundwater Monitoring Program. Groundwater sampling procedures facilitate obtaining a representative groundwater sample from an aquifer for water quality analysis. The water sampling procedures for general mineral and dissolved nitrogen sampling are presented below, along with special procedures for collecting samples for analyzing Constituents of Emerging Concern (CECs).

References

The procedures used for the LOBP Groundwater Monitoring Program have been developed through consideration of the constituents of analysis, well construction and type, and a review of the following references:

- U.S. Environmental Protection Agency, 1999, Compendium of ERT Groundwater Sampling Procedures, EPA/540/P-91/007, January 1999.
- Wilde, F. D., 2004, *Cleaning of Equipment for Water Sampling* (ver 2.0): U.S. Geological Survey Techniques of Water-Resources Investigations, Book 9, Chapter A3, revised April 2004.

http://water.usgs.gov/owq/FieldManual/chapter3/Ch3_contents.html

Wilde, F. D., 2008, Guidelines for Field-Measured Water Quality Properties (ver. 2.0):
 U.S. Geological Survey Techniques of Water-Resources Investigations, Book 9,
 Chapter A6, Section 6, October 2008.

http://water.usgs.gov/owq/FieldManual/Chapter6/6.0_contents.html

Well Information

Table 1 below lists important well information to be maintained in a well file or in a field notebook. Additional information that should be available to the person collecting groundwater samples include a description of access to the property and the well, the presence and depth of cascading water, or downhole obstructions that could interfere with sampling equipment.

1

Table 1 Well File Information

Well Completion Report	Hydrologic Information	Additional Information to be Recorded
Well name	Map showing basin boundaries and wells	Township, Range, and 1/4 1/4 Section
Well Owner	Name of groundwater basin	Latitude and Longitude (Decimal degrees)
Drilling Company	Description of aquifer	Assessor's Parcel Number
Location map or sketch	Confined, unconfined, or mixed aquifers	Description of well head and sounding access
Total depth	Pumping test data	Reference point elevations
Perforation interval	Hydrographs	Well use and pumping schedule if known
Casing diameter	Water quality data	Date monitoring began
Date of well completion	Property access instructions/codes	Land use

Groundwater Sampling Procedures

Non-equipped wells

- 1) Calibrate field monitoring instruments each day prior to sampling;
- 2) Inspect wellhead condition and note any maintenance required (perform at earliest convenience);
- 3) Measure depth to static water (record to 0.01 inches) from surveyed reference point;
- 4) Install temporary purge pump to at least three feet below the water surface (deeper setting may be needed if water level draw down is too great);
- 5) Begin well purge, record flow rate;
- Measure discharge water EC (measured to 10 μmhos/cm), pH (measured to 0.01 units), and temperature (measured to 0.1 degrees C) at regular intervals during well purging. Record time and gallons purged. Note discharge water color, odor, and turbidity (visual);
- A minimum of three casing volumes of water should be removed during purging, or one borehole volume opposite perforated interval, whichever is greater*. In addition, a set of at least three consecutive field monitoring measurements with stable values should be recorded. For EC, stability within 5 percent of the first value in the set is sufficient (typically within 20-50 µmhos/cm). For pH, stability within 0.3 units is sufficient. For temperature, stability within 0.2 degrees C is sufficient;
- 8) Collect sample directly from discharge tube, note sample color, odor, turbidity (visual). Use only laboratory-provided containers. Wear powder-free nitrile gloves when collecting groundwater samples;
- 9) Place samples on-ice for transport to the laboratory;
- 10) Remove temporary pump and rinse with clean water;
- 11) Close well and secure well box lid:
- *note: If well is pumped dry at the minimum pumping rate, the well may be allowed to recover and then sampled by bailer within 24 hours.

Equipped wells

The sampling port for an equipped well must be upstream of any water filtration or chemical feeds. Sample from the discharge line as close to the wellhead as possible. Sampling procedures for equipped wells will vary. For active wells (i.e. wells used daily), the need for purging three casing volumes is unnecessary. Flush supply line from well or holding tank to sampling port, and record one set of EC, pH, and temperature readings prior to sampling. For inactive wells, a field monitoring procedure similar to that described for non-equipped wells above is appropriate. Static water level measurements should also be taken before sampling. Water samples should always be transported on-ice to the laboratory.

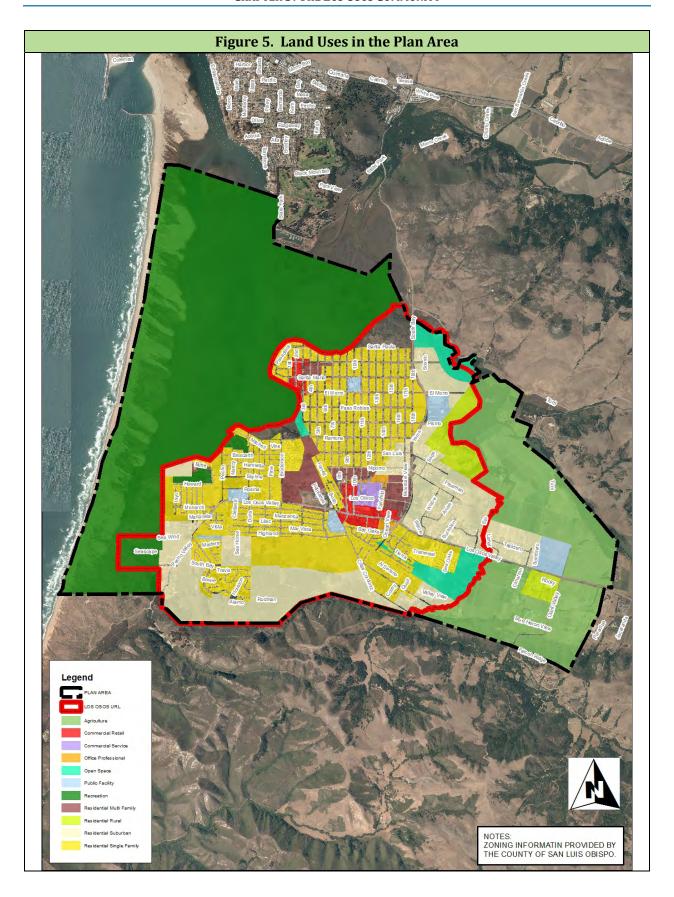
Chain-of-Custody

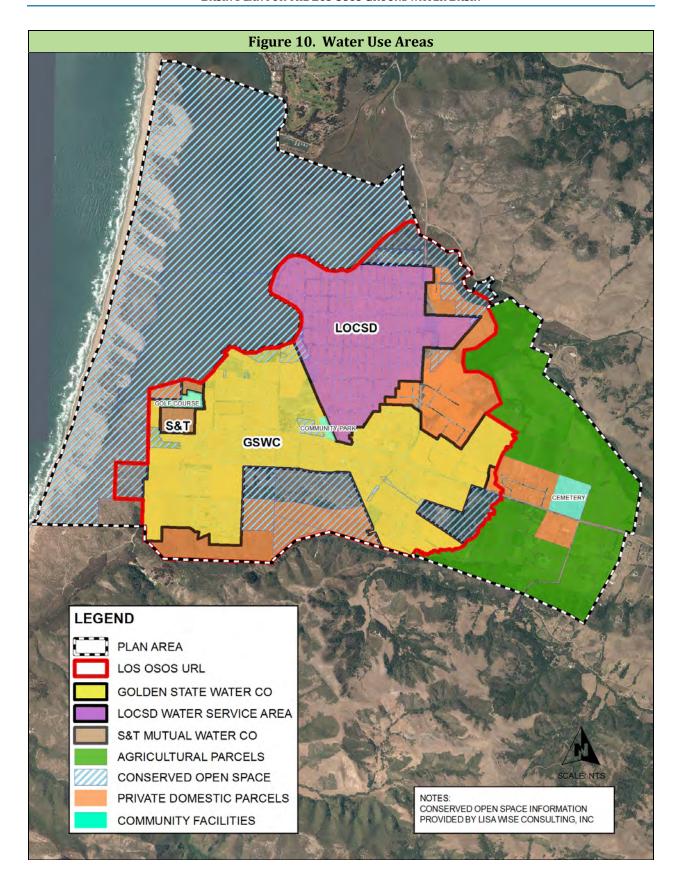
The chain-of-custody and associated sample bottle labels are used to document sample identification, specify the analyses to be performed, and trace possession and handling of a sample from the time of collection through delivery to the analytical laboratory. The sampler should fill out the sample identification labels and affix them to the sample bottles prior to, or upon, sample collection. A chain-of-custody form should be filled out by the sampler and a signature and date/time of sample transfers are required for each relinquishing and receiving party between sample collection and laboratory delivery.

Groundwater Sampling Equipment Decontamination

Field equipment should be cleaned prior to the sampling event and between sampling locations. Sampling pumps and hand bailers should be brushed with a nylon-bristle brush using a solution of 0.1 to 0.2-percent (volume/volume) non-phosphate soap in municipal-source tap water. The equipment should then be triple-rinsed with deionized water. Purge the pump hose of well water between sampling locations by pumping deionized through the hose. Groundwater sampling equipment should be protected from contact with the ground, or other potentially contaminating materials, at all times.

Special procedures for sampling for CEC compounds from unequipped well:


- 1) A new, teflon-lined polyethylene discharge hose or bailer will be used at each unequipped well sampling location;
- 2) The sampling pump will be decontaminated prior to each well sampled: Decontamination will consist of brushing pump body, inlet screen, and submerged portion of power cable in a phosphate-free cleaning solution, followed by rinsing, pumping distilled water, and final rinse;


- Personnel collecting the sample will use powder-free nitrile gloves and observe special precautions for testing as directed by the laboratory (such as no caffeinated drink consumption on day of sampling, standing downwind of sampling port during sample collection, double-bag sample bottles, etc.);
- 4) Equipment blanks of distilled water pumped through the sampling pump are recommended;
- 5) A clean water/travel blank of distilled water (from the same source used for pump decontamination) is recommended.

APPENDIX E

Land Use and Water Use Areas (from LOBP)

JANUARY 2015 27

34 JANUARY 2015

APPENDIX F

2023 Agricultural and Community Turf Water Use Estimates

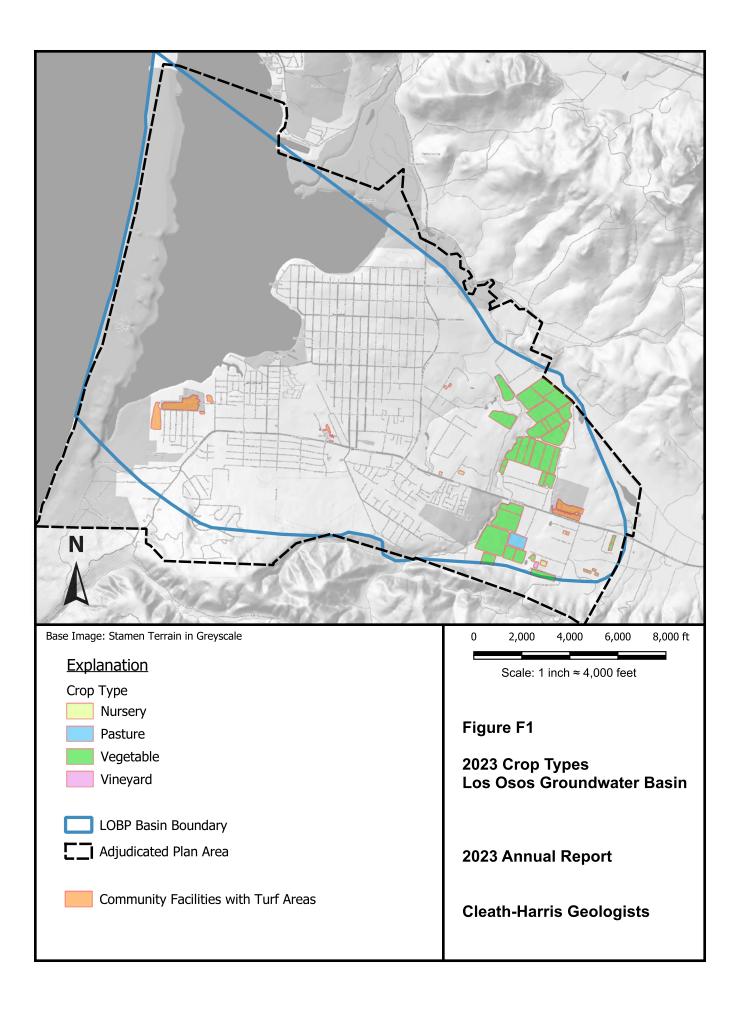
Agriculture and Community Turf Applied Irrigation Water Estimate - 2023

Groundwater production estimates for agriculture and turf irrigation were developed using a daily soil-moisture budget with local data input. Sources of data included:

- Land use/cropping data sets from LandIQ for estimating irrigated acreages (2023).
- Daily rainfall from County rain gage 727 (former Los Osos Landfill).
- Daily reference evapotranspiration from the California Irrigated Management Information System (CIMIS) Station 160 (San Luis Obispo West Chorro Valley) located in DWR Climate Zone 6, which is the same climate zone as the Los Osos Valley.
- Water holding capacity and rooting depths from UC Davis Cooperative Extension at http://UCManageDrought.ucdavis.edu
- Crop Coefficients (Kc) from prior work in the Los Osos basin.

The soil-moisture budget methodology used accounts for soil holding capacity, crop rooting depth, leaching fraction, irrigation efficiency, local precipitation, and local reference evapotranspiration. The following equation, modified from a general formula for irrigation water requirements, was used for the soil-moisture budget (Carollo, 2012, modified from Burt et al., 2002):

Applied Irrigation Water = (ETc - ER) / (EF)


Where:

ETc [Crop evapotranspiration] = ETo [reference evapotranspiration] x Kc [crop coefficient] ER [effective rainfall] = rainfall stored in soil and available to crop EF [efficiency factor] = (1-LF[leaching fraction]) x IE [irrigation efficiency] Assumes no frost protection for crops in the Los Osos Creek Valley.

Irrigated Acreage

Crop data used in this annual report comes from a GIS geodatabase provided by LandIQ. This agricultural land-use dataset is sourced from remotely sensed imagery and includes fields by crop type within the Basin and is separated into 13 categories, including some non-irrigated types such as urban, grain and hay, and fallow. The categories were then merged into the five main irrigated-crop categories used in previous reports: nursery, pasture, vegetable, vineyard and turf. Fields that were shown in the LandIQ dataset but were identified as likely being irrigated from bedrock wells outside the Basin were not included in the final crop acreages. 2023 crop acreages were then estimated using this updated dataset for use in soil moisture budget modeling. After review and comparison to crop datasets used in previous years from the County of San Luis Obispo, it was determined that the LandIQ dataset is accurate and can be directly compared with previous crop acreage estimates.

A land use survey map for 2023 is shown in Figure F-1. Tabulation of the irrigated acreages is presented in Table F-1.

Table F-1 2023 County Crop Survey Eastern Area

Crop Type	Acres
Nursery	3.3
Pasture ¹	8.6
Vegetables	248
Total	260

¹Sod farm listed as pasture in survey

Crop acreages listed in Table F-1 are in the Eastern Area (Los Osos Creek Valley and Cemetery Mesa). In addition, the turf areas for community facilities were calculated from aerial images. Table F-2 presents these areas below.

Table F-2
Community Irrigated Turf Areas

Location	Acres
Memorial Park	12.5
Community Park	1.1
Sea Pines	24

Turf areas for schools, parks, cemeteries, and golf courses are generally classified in land use surveys as urban landscape, rather than given an agricultural designation. Turf grown for sod farms falls under an agricultural classification (pasture). For the purposes of the soil-moisture budget, the turf for community facilities and sod farms are considered as pasture.

Soil-Moisture Budget

The soil-moisture budget was constructed as a spreadsheet. Irrigation was applied as needed to offset soil moisture deficits after accounting for crop evapotranspiration, rainfall, rooting depths, and soil holding capacities.

As noted above:

Applied Irrigation Water = (ETc - ER) / (EF)

Where:

ETc [Crop evapotranspiration] = ETo [reference evapotranspiration] x EC [crop coefficient]

<u>ETo</u>: Reference evapotranspiration is imported from CIMIS Station 160 (San Luis Obispo West - Chorro Valley available on-line at: https://cimis.water.ca.gov/

<u>Kc</u>: The crop coefficient for turfgrass (Memorial Park, Golf Course, Community Park and the sod farm) is by definition 1, since the reference ETo crop is turfgrass. The crop coefficient for vegetables/row crops are based on prior investigations and summarized in Table F-3 below.

Table F-3
Crop Coefficients - Vegetables

Month	Kc
JAN	0.41
FEB	0.41
MAR	0.53
APR	0.51
MAY	0.73
JUN	0.86
JUL	0.83
AUG	0.76
SEP	0.71
OCT	0.56
NOV	0.46
DEC	0.34

Source: Yates & Williams (2003)

ER [effective rainfall] = rainfall stored in soil and available to crop

ER is accounted for in the daily soil moisture budget. An example of the moisture budget is presented at the end of this appendix.

The water holding capacity was estimated based on the typical soils present in the Los Osos Creek valley: Marimel silty clay loam, Marimel sandy clay loam, and Salinas silty clay loam. Using NRCS Soil Survey accessible here: https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm, and assuming a typical rooting depth of 2 feet, the resulting water holding capacity for the soil moisture budget calculations was estimated at 4 inches.

EF [efficiency factor] = (1-LF[leaching fraction]) x IE [irrigation efficiency]

The efficiency factor was substituted with a calibration factor of 92 percent. The purpose of the substitution was to reconcile the average annual irrigation requirement from a daily soil-moisture budget, prepared for 2006-2008, to the irrigation estimate from prior work, which was also based on the 2006-2008 period but used a different methodology (CHG, 2009b). The intent was to develop a methodology that provided variation in irrigation estimates from year to year based on both rainfall and acreages, but that was also consistent with historical estimates. Calibration factor development is shown in Table F-4.

Table F-4
Calibration of Soil Moisture Methodology to Prior 2006-2008 Estimate

Description	Units	Average 2006-2008	2017
Irrigation demand vegetables	inches	22.53	24.92 ¹
Irrigation demand pasture	inches	37.24	41.27 ²
Calibration Factor ³	factor	0.92	0.92
Applied irrigation vegetables	feet	2.04	2.26
Applied irrigation pasture	feet	3.37	3.74
Vegetables acreage ⁴	acres	339	282.2
Vegetables applied water	acre-feet	692	637.8
Pasture acreage ⁴	acres	18.3	8.7
Pasture applied water	acre-feet	61.7	32.5
TOTAL applied ag irrigation	acre-feet	754	670
TOTAL from CHG (2009b)	acre-feet	750	

¹From 2017 Annual Report Table F-3;

2017 acreage from County GIS 2016 (1 vineyard and 1.8 nursery acres counted as 2.2 acres in vegetables, based on equivalent water demand conversion using 2012 County Master Water Plan Table A1 [Carollo, 2012]).

There is a reduction in irrigation water demand between 2006-2008 (750 AFY) and 2017 (670 AF) shown in Table F-4 due to a reduction in irrigated acreage. This reduction may have occurred between 2006-2008 and 2017, although it may also have been from changing the source for irrigated acreage estimates from aerial images (2006-2008 and subsequent years through 2016) to the County agricultural database (beginning in 2017). The County database is field checked with growers and is the appropriate data source.

Results of the soil-moisture budget method for estimating applied irrigation for agriculture and community facilities are included in tables below, and an example of the soil moisture is attached to the end of this appendix.

²From 2017 Annual Report Table F-4;

³Efficiency factor used to calibrate 2006-2008 total

⁴2006-2008 acreage from CHG, 2009b (excludes memorial park);

[&]quot;--" = no value for this cell

Tables F-5 and F-6 present irrigation demand as crop evapotranspiration for calendar years 2020 through 2023. The soil-moisture budget results show irrigation demand for vegetables was lower in 2023, compared to 2022. This can be explained by the increase in rainfall during the year, and a lower reference evapotranspiration from the local CIMIC station. Irrigation demand for turfgrass also decreased between 2022 and 2023, also due to the increased rainfall and lower reference evapotranspiration.

Table F-5
Soil-Moisture Budget Results (Vegetables)

Year	Irrigation demand	ЕТо	ЕТс	Precip*
		(inche	es)	
2020	24.19	52.88	34.03	9.76
2021	25.13	52.89	34.18	23.12
2022	27.78	56.17	36.62	13.60
2023	20.66	46.54	30.02	29.05

^{*}calendar year

Table F-6
Soil-Moisture Budget Results (Pasture/Turf)

Year	Irrigation Demand (ETaw)	ЕТо	ETc	Precip*
		(inche	es)	
2020	42.30	52.88	52.88	9.76
2021	42.45	52.89	52.89	23.12
2022	46.24	56.17	56.17	13.60
2023	33.27	46.54	46.54	29.05

^{*}calendar year

Table F-7 summarizes the estimated applied irrigation for the various agricultural land uses. Due to the relatively minor acreage involved, nursery and vineyard acres were converted to equivalent acres in vegetables based on water demand estimates from the County Water Master Plan table A1 (Carollo, 2012). The estimated applied irrigation for calendar year 2023 is 500 acre-feet (a decrease of 180 acre-feet from 2022).

Table F-7
Applied Irrigation for Agriculture

Description	Units	2020	2021	2022	2023
Irrigation demand vegetables	inches	24.19 ¹	25.13 ¹	27.78 ¹	20.66 ¹
Irrigation demand pasture	inches	42.3 ²	42.45 ²	46.24 ²	33.27 ²
Irrigation Calibration Factor ³	factor	0.92	0.92	0.92	0.92
Applied irrigation vegetables	feet	2.19	2.28	2.52	1.87
Applied irrigation pasture	feet	3.83	3.85	4.19	3.01
Vegetables acreage ⁴	acres	282.6	255.3	256.9	252.4
Vegetables applied water	acre-feet	618.9	582.1	647.4	472.0
Pasture acreage⁵	acres	8.7	8.7	8.6	8.6
Pasture applied water	acre-feet	33.5	33.5	36	25.9
TOTAL applied agricultural irrigation (closest 10 acre-feet)	acre-feet	650	620	680	500

Table F-8 summarizes the estimated applied irrigation for community facilities. The total estimated water demand for community facilities in the 2023 calendar year was 113 acre-feet, which was met with 56 acre-feet of recycled water use and 57 acre-feet of groundwater production.

Table F-8
2023 Applied Irrigation for Community Facilities

Description	Units	Memorial Park	Sea Pines Golf*	Community Park	Total**
Turf Area (from Table H-2)	acres	12.5	24	1.1	37.6
Applied Irrigation (from Table H-6)	feet	3.01	3.01	3.01	3.01
TOTAL Applied Irrigation	acre-feet	37.6	72.2	3.3	113

^{*}includes an estimated 56 acre-feet of recycled water

^{**113} acre-feet total applied irrigation – 56 acre-feet recycled water = **57 acre-feet groundwater production**

Sample Calculations: Daily Soil-Moisture Budget

NOTE: Wilting point (maximum allowable deficit), irrigation efficiencies, leaching fraction, and specific growing season dates are collectively approximated with the Efficiency Factor (EF), which calibrates the soil-moisture budget results to the prior estimates for 2006-2008 (CHG, 2009b). The soil-moisture budget is a tool developed to assist basin management and is not an irrigation schedule.

[A], [B]: Day and month used for sample calculation: November 7, 2023

[C]: ETo = 0.11 inches

[D]: Kc = 0.46

[E]: ETc = ETo*Kc = 0.05 inches

[F]: Precipitation + Irrigation = [N] + [M] = 0.0 inches + 0.05 inches = 0.05 inches

[G]: Water Available from Soil Profile = WHC of active root zone (4 inches) + soil moisture deficit on Nov 7 (-4.00 inches) = 0.0 inches

[H]: ETc Met by Precipitation + Irrigation = **[E]** OR **[F]**, whichever is smaller. Both are equal, so **[H]** = 0.05 inches

[I]: ETc Met by Profile = [G] OR ([E] - [H]), whichever is smaller. Both are equal, so [I] = 0.0 inches

[J] Precip Available for Profile = [F] - [H] = 0.05 inches -0.05 inches = 0.0 inches

[K] Soil Moisture Deficit = whichever is greater between (a) -WHC (-4.0 inches) and (b) minimum of either (c) 0 inches or (d) Nov 7 Soil Moisture Deficit (-4.00 inches) - [I] (0 inches) + [J] (0.0 inches) = -4.00 inches. In this case (a) and (d) are the same and less than (c), therefore [K] = (a) = -4.00 inches

[L] Monthly Deep Percolation and Runoff = whichever is greater between (a) 0 inches and (b) Nov 7 Soil Moisture Deficit (-4.00 inches) + [J] (0.0 inches) = -4.00 inches, therefore [L] = 0 inches

[M] Irrigation Demand = [E] - [N] - [G] if greater than zero, otherwise 0 inches. In this case [M]= 0.05 inches

[N] Precipitation = 0.0 inches

[A], [B]: Day and month used for sample calculation: November 29, 2023

[C]: ETo = 0.04 inches

[D]: Kc = 0.46

[E]: ETc = ETo*Kc = 0.02 inches

[F]: Precipitation + Irrigation = [N] + [M] = 0.02 inches + 0.0 inches = 0.02 inches

[G]: Water Available from Soil Profile = WHC of active root zone (4 inches) + soil moisture deficit on Nov 28 (-3.35 inches) = 0.65 inches

[H]: ETc Met by Precipitation + Irrigation = [E] OR [F], whichever is smaller. Both are equal, so [H] = 0.02 inches

[I]: ETc Met by Profile = [G] OR ([E] - [H]), whichever is smaller. In this case [G] = [E] - [H] = 0.0 inches

[J] Precip Available for Profile = [F] - [H] = 0.02 inches - 0.02 inches = 0 inches

[K] Soil Moisture Deficit = whichever is greater between (a) -WHC (-4.0 inches) and (b) minimum of either (c) 0 inches or (d) November 28 Soil Moisture Deficit (-3.35 inches) - [I] (0.0 inches) + [J] (0 inches) = -3.35 inches. In this case (d) is less than (c) and greater than (a), therefore [K] = (d) = -3.35 inches

[L] Monthly Deep Percolation and Runoff = whichever is greater between (a) 0 inches and (b) Nov 28 Soil Moisture Deficit (-3.35 inches) + **[J]** (0 inches) = -3.65 inches, therefore **[L]** = 0 inches

[M] Irrigation Demand = [E] (0.02 inches) - [N] (0.02 inches) - [G] (0 inches) if greater than zero, otherwise 0 inches. On this date [M] = 0.0 inches

[N] Precipitation = 0.02 inches

Water Holding Capacity (WHC) (in/ft)

Active Root Zone Depth (ft)

2.0

Highlighted rows used for example calcuations

WHC of Active Root Zone (in) 4.0
Crop Coeficient (Kc) Variable

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[1]]J]	[K]	[L]	[M]	[N]
Day	Month	Refernce ET (ETo) CIMIS Sta. 160	Crop Coefficient (Kc)	Crop ET (ETc)	Precip. + Irrigation	Water Available from Soil Profile	ETc met by Precip + Irrig	ETc met by Profile	Precip Available for Profile	Soil Moisture Deficit	Monthly Deep Percolation and Runoff	Irrigation Demand	Precip Sta. 727
2023		(in)	(in)	(in)	(in)	(in)	(in)	(in)	(in)	(in)	(in)	(in)	(in)
1		0.14	0.46	0.06	0.06	0.00	0.06	0.00	0.00	-4.00	0.00	0.06	0.00
2		0.13	0.46	0.06	0.06	0.00	0.06	0.00	0.00	-4.00	0.00	0.06	0.00
3		0.15	0.46	0.07	0.07	0.00	0.07	0.00	0.00	-4.00	0.00	0.07	0.00
4		0.12	0.46	0.06	0.06	0.00	0.06	0.00	0.00	-4.00	0.00	0.06	0.00
5		0.09	0.46	0.04	0.04	0.00	0.04	0.00	0.00	-4.00	0.00	0.03	0.01
6		0.07	0.46	0.03	0.03	0.00	0.03	0.00	0.00	-4.00	0.00	0.01	0.02
7		0.11	0.46	0.05	0.05	0.00	0.05	0.00	0.00	-4.00	0.00	0.05	0.00
8		0.11	0.46	0.05	0.05	0.00	0.05	0.00	0.00	-4.00	0.00	0.05	0.00
9		0.11	0.46	0.05	0.05	0.00	0.05	0.00	0.00	-4.00	0.00	0.05	0.00
10		0.12	0.46	0.06	0.06	0.00	0.06	0.00	0.00	-4.00	0.00	0.06	0.00
11		0.13	0.46	0.06	0.06	0.00	0.06	0.00	0.00	-4.00	0.00	0.06	0.00
12		0.11	0.46	0.05	0.05	0.00	0.05	0.00	0.00	-4.00	0.00	0.05	0.00
13		0.09	0.46	0.04	0.04	0.00	0.04	0.00	0.00	-4.00	0.00	0.04	0.00
14		0.09	0.46	0.04	0.04	0.00	0.04	0.00	0.00	-4.00	0.00	0.04	0.00
15	November	0.08	0.46	0.04	0.04	0.00	0.04	0.00	0.00	-4.00	0.00	0.04	0.00
16	rioveinoei	0.09	0.46	0.04	0.04	0.00	0.04	0.00	0.00	-4.00	0.00	0.04	0.00
17		0.06	0.46	0.03	0.03	0.00	0.03	0.00	0.00	-4.00	0.00	0.03	0.00
18		0.01	0.46	0.00	1.04	0.00	0.00	0.00	1.04	-2.96	0.00	0.00	1.04
19		0.10	0.46	0.05	0.00	1.04	0.00	0.05	0.00	-3.01	0.00	0.00	0.00
20		0.10	0.46	0.05	0.00	0.99	0.00	0.05	0.00	-3.06	0.00	0.00	0.00
21		0.10	0.46	0.05	0.00	0.94	0.00	0.05	0.00	-3.10	0.00	0.00	0.00
22		0.10	0.46	0.05	0.00	0.90	0.00	0.05	0.00	-3.15	0.00	0.00	0.00
23		0.08	0.46	0.04	0.00	0.85	0.00	0.04	0.00	-3.19	0.00	0.00	0.00
24		0.08	0.46	0.04	0.01	0.81	0.01	0.03	0.00	-3.21	0.00	0.00	0.01
25		0.08	0.46	0.04	0.00	0.79	0.00	0.04	0.00	-3.25	0.00	0.00	0.00
26		0.09	0.46	0.04	0.00	0.75	0.00	0.04	0.00	-3.29	0.00	0.00	0.00
27		0.07	0.46	0.03	0.00	0.71	0.00	0.03	0.00	-3.32	0.00	0.00	0.00
28		0.07	0.46	0.03	0.00	0.68	0.00	0.03	0.00	-3.35	0.00	0.00	0.00
29		0.04	0.46	0.02	0.02	0.65	0.02	0.00	0.00	-3.35	0.00	0.00	0.02
30		0.07	0.46	0.03	0.00	0.65	0.00	0.03	0.00	-3.39	0.00	0.00	0.00

APPENDIX G

Precipitation and Streamflow Data

Note: Rainfall data for the end of 2023 was downloaded from the Station # 727 County Gage Site for report use, summary tables have not yet been published as of this report.

San Luis Obispo County Public Works

Recording Rain Station MONTHLY PRECIPITATION REPORT

Station Name - Los Osos Landfill # 727

Station Location -

Latitude - 35° 19' 19" **Longitude -** 120° 48' 03"

Description - Northeast Los Osos South of Turri Road

Water Years -

Beginning - 2005-2006 **Ending -** 2022-2023

Station Statistics -

Month	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	TOTAL
Minimum	0.00	0.00	0.00	0.00	0.04	0.12	0.00	0.00	0.00	0.00	0.00	0.00	6.81
Average	0.11	0.02	0.09	0.89	1.11	3.39	4.34	2.67	2.95	0.81	0.34	0.08	16.82
Maximum	1.93	0.20	0.64	6.22	3.74	11.46	10.96	7.65	8.03	3.70	2.64	1.10	34.74

Notes -

Earlier data may be available. Contact Public Works for more information.

San Luis Obispo County Public Works

Recording Rain Station MONTHLY PRECIPITATION REPORT

Station Name and no. Los Osos Landfill #727 *** All units are in inches ***

Water Year	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Total
2022-2023	0.00	0.00	0.64	0.04	1.30	9.09	10.96	4.47	7.63	0.09	0.49	0.03	34.74
2021-2022	0.00	0.00	0.00	2.64	0.31	8.39	0.04	0.00	1.84	0.36	0.00	0.00	13.58
2020-2021	0.00	0.04	0.00	0.00	0.47	2.01	9.92	0.20	1.26	0.00	0.04	0.00	13.94
2019-2020	0.00	0.08	0.00	0.00	2.03	4.41	0.24	0.04	4.80	1.89	0.12	0.00	13.60
2018-2019	0.00	0.00	0.00	0.43	3.74	1.14	6.14	6.89	3.94	0.08	1.46	0.00	23.82
2017-2018	0.00	0.00	0.16	0.16	0.47	0.12	3.78	0.16	7.99	0.79	0.00	0.00	13.63
2016-2017	0.00	0.00	0.00	1.65	2.76	3.39	9.02	7.65	1.34	0.55	0.27	0.00	26.63
2015-2016	1.93	0.00	0.08	0.08	1.26	1.85	5.04	0.86	4.85	0.20	0.00	0.00	16.15
2014-2015	0.00	0.00	0.00	0.00	0.28	5.20	0.08	0.91	0.43	0.67	0.12	0.00	7.68
2013-2014	0.00	0.00	0.00	0.24	0.28	0.12	0.00	4.06	1.42	0.71	0.00	0.00	6.81
2012-2013	0.00	0.00	0.00	1.18	1.69	2.64	1.02	0.67	0.43	0.31	0.12	0.04	8.11
2011-2012	0.00	0.08	0.04	1.06	2.17	0.16	2.28	0.35	2.68	2.24	0.00	0.00	11.06
2010-2011	0.00	0.00	0.12	1.54	1.85	11.46	3.03	3.78	8.03	0.28	0.59	1.10	31.77
2009-2010	0.00	0.00	0.04	6.22	0.04	2.87	9.76	4.13	1.14	1.93	0.04	0.00	26.18
2008-2009	0.00	0.00	0.00	0.04	0.04	0.75	0.71	4.61	1.06	0.20	0.20	0.35	7.95
2007-2008	0.00	0.00	0.00	0.43	0.12	2.68	10.47	2.99	0.00	0.24	0.00	0.00	16.93
2006-2007	0.00	0.00	0.00	0.12	0.43	2.28	1.26	2.56	0.43	0.35	0.04	0.00	7.48
2005-2006	0.04	0.20	0.63	0.24	0.75	2.52	4.45	3.70	3.90	3.70	2.64	0.00	22.76

Daily Precipitation, Landfill # 727, 2023-2024

						on, Lanajiii i				_		
Day	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
1												
2												
3												
4												
5		0.01			0.01							
6					0.02							
7												
8			0.01	0.01								
9			0.02						<u></u>			
10		0.03										
11		0.05										
12												
13												
14				0.01								
15	0.01		0.01	0.02								
16		0.01		0.01								
17		0.01		0.01								
18					1.04	0.26						
19						0.85						
20				0.02		1.35						
21	0.01					0.13						
22						0.01						
23						0.01						
24		0.01			0.01	0.01						
25			0.01									
26												
27				0.01				1				
28								1				
29			0.08		0.02	0.58						
30	1		0.02			0.69		1				
31						0.01		<u> </u>				
		<u> </u>	<u> </u>			<u> </u>			<u> </u>		<u> </u>	<u> </u>
Total	0.02	0.12	0.15	0.09	1.10	3.90	0.00	0.00	0.00	0.00	0.00	0.00

5.38

1.48

5.38

5.38

5.38

5.38

5.38

5.38

0.02

Cumu Total

0.14

0.29

0.38

(inches)

Station Name and no. Los Osos Landfill # 727 Season 2022-2023

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1					0.08	1.27			0.17				1
2						0.12	0.17				0.19		2
3						1.23	0.01				0.22		3
4						0.45	1.61	0.91			0.02		4
5						0.01	1.03	0.23	0.20				5
6				0.04	0.01	0.08	0.01					0.03	6
7					0.24	0.01	0.06						7
8					0.89		0.33						8
9					0.07	0.13	4.18		0.29	0.01			9
10			0.16			2.01	0.37		1.62				10
11						0.33		0.04		0.01			11
12						0.28			0.01				12
13							0.12		0.03				13
14							1.69		2.44				14
15					0.01		0.28		0.07		0.01		15
16							0.68				0.01		16
17							0.01				0.01		17
18			0.24			0.01			0.01				18
19			0.24				0.11		0.14				19
20						0.01			0.06				20
21									1.16				21
22								0.01	0.78				22
23								0.15	0.04	0.01	0.03		23
24								2.13					24
25								0.01					25
26								0.02		0.01			26
27						1.73		0.59		0.01			27
28								0.38	0.30	0.02			28
29							0.29		0.23				29
30						0.27	0.01		0.08	0.02			30
31						1.15							31
Total	0.00	0.00	0.64	0.04	1.30	9.09	10.96	4.47	7.63	0.09	0.49	0.03	
Cum. Total	0.00	0.00	0.64	0.68	1.98	11.07	22.03	26.50	34.13	34.22	34.71	34.74	

(inches)

Station Name and no. Los Osos Landfill #727 Season 2021-2022

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1							*						1
2													2
3					0.04								3
4									0.04				4
5													5
6													6
7						0.04							7
8													8
9					0.24	0.16							9
10					0.04								10
11													11
12													12
13						2.95							13
14						1.18							14
15													15
16						0.28							16
17													17
18									0.04				18
19									0.04				19
20									0.04				20
21										0.36			21
22						0.63							22
23						1.69							23
24				0.16		0.12							24
25				2.48		0.55	0.04						25
26						0.08							26
27						0.24							27
28									1.68				28
29						0.47							29
30													30
31													31
Total	0.00	0.00	0.00	2.64	0.31	8.39	0.04	0.00	1.84	0.36	0.00	0.00	
Cum. Total	0.00	0.00	0.00	2.64	2.95	11.34	11.38	11.38	13.22	13.58	13.58	13.58	

(inches)

Station Name and no. Los Osos Landfill #727 Season 2020-2021

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1													1
2													2
3													3
4													4
5							0.04						5
6													6
7													7
8													8
9									0.20				9
10									0.71				10
11									0.04				11
12						0.04		0.16	0.04				12
13		0.04			0.39	0.16							13
14													14
15								0.04	0.16				15
16													16
17						0.12					0.04		17
18					0.04								18
19					0.04				0.12				19
20													20
21													21
22							0.12						22
23							0.04						23
24							0.12						24
25													25
26						0.04	0.20						26
27						0.55	5.67						27
28						1.06	3.50						28
29							0.24						29
30													30
31						0.04							31
Total	0.00	0.04	0.00	0.00	0.47	2.01	9.92	0.20	1.26	0.00	0.04	0.00	
Cum. Total	0.00	0.04	0.04	0.04	0.51	2.52	12.44	12.64	13.90	13.90	13.94	13.94	

(inches)

Station Name and no. Los Osos Landfill #727 Season 2019-2020

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1						0.35							1
2													2
3						0.12							3
4						0.75							4
5										1.34			5
6						0.08			0.20	0.04			6
7						0.08			0.16	0.16			7
8						0.16	0.04			0.04			8
9							0.12			0.31			9
10									1.42				10
11		0.08							0.35				11
12													12
13						0.04							13
14								0.04					14
15									0.51				15
16							0.04		0.98				16
17									0.04		0.08		17
18						0.04					0.04		18
19									0.04				19
20													20
21													21
22						1.42			0.39				22
23									0.35				23
24									0.08				24
25						1.02			0.28				25
26						0.20	0.04						26
27					1.04								27
28					0.47								28
29					0.04	0.12							29
30					0.47	0.04							30
31													31
	0.0-						6.5.			4.5-	- · ·		
Total	0.00	0.08	0.00	0.00	2.03	4.41	0.24	0.04	4.80	1.89	0.12	0.00	
Cum. Total	0.00	0.08	0.08	0.08	2.11	6.51	6.75	6.79	11.59	13.48	13.60	13.60	

(inches)

Station Name and no. Los Osos Landfill #727 Season 2018-2019

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1								0.31	0.04				1
2								1.81	0.75				2
3				0.35				0.35	0.12				3
4				0.04		0.08		0.98					4
5						0.04	0.67	0.08	0.67				5
6						0.04	0.63		0.28		0.12		6
7									0.08				7
8								0.31					8
9							0.31	0.24	0.12				9
10								0.43	0.12				10
11							0.71						11
12							0.16						12
13								0.28					13
14							0.31	0.87					14
15							0.79	0.47					15
16						0.43	0.51	0.12		0.08	0.51		16
17						0.20	0.91	0.35					17
18											0.51		18
19							0.28		0.08		0.24		19
20									1.34				20
21					0.28			0.04	0.08		0.04		21
22													22
23					0.35				0.12				23
24					0.04	0.12							24
25					0.04	0.24							25
26											0.04		26
27								0.24	0.12				27
28				0.04	0.98				0.04				28
29					2.05								29
30													30
31							0.87						31
Total	0.00	0.00	0.00	0.43	3.74	1.14	6.14	6.89	3.94	0.08	1.46	0.00	
Cum. Total	0.00	0.00	0.00	0.43	4.17	5.31	11.46	18.35	22.28	22.36	23.82	23.82	

(inches)

Station Name and no. Los Osos Landfill #727 Season 2017-2018

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1									0.82				1
2									0.16				2
3					0.03				0.24				3
4							0.19						4
5													5
6													6
7										0.40			7
8					0.04		1.42						8
9					0.12		1.77						9
10			0.08						0.51				10
11			0.08										11
12									0.04	0.04			12
13									0.35				13
14									0.28				14
15										0.04			15
16					0.04				0.35	0.19			16
17									0.08				17
18							0.08						18
19							0.08			0.12			19
20				0.12		0.12			0.48				20
21									2.16				21
22									2.48				22
23													23
24													24
25							0.24						25
26					0.16			0.16					26
27					0.08								27
28													28
29													29
30													30
31				0.04					0.04				31
Total	0.00	0.00	0.16	0.16	0.47	0.12	3.78	0.16	7.99	0.79	0.00	0.00	
Cum. Total	0.00	0.00	0.16	0.32	0.79	0.91	4.69	4.85	12.84	13.63	13.63	13.63	

(inches)

Station Name and no. Los Osos Landfill #727 Season 2016-2017

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1													1
2								0.24					2
3								0.16					3
4							2.25						4
5							0.23	0.55	0.35				5
6								0.51					6
7							0.52	0.63		0.15	0.27		7
8						1.18	1.10	0.04		0.04			8
9						0.08	0.12	0.28					9
10						0.12	0.23	0.43					10
11							0.04	0.04					11
12							0.59						12
13										0.08			13
14										0.04			14
15				0.08		1.07							15
16				0.08		0.55		0.31					16
17				0.08				3.27		0.08			17
18							0.56	0.32		0.16			18
19							0.27	0.08					19
20					1.90		1.22	0.51					20
21					0.04		0.16	0.24	0.20				21
22							1.26		0.47				22
23						0.35	0.43						23
24							0.04		0.12				24
25									0.20				25
26					0.67			0.04					26
27				0.67	0.15								27
28				0.71									28
29													29
30				0.03		0.04							30
31													31
Total	0.00	0.00	0.00	1.65	2.76	3.39	9.02	7.65	1.34	0.55	0.27	0.00	
Cum. Total	0.00	0.00	0.00	1.65	4.41	7.80	16.82	24.47	25.81	26.36	26.63	26.63	

Season Total 26.63

(inches)

Station Name and no. Los Osos Landfill #727 Season 2015-2016

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1													1
2					0.59								2
3						0.04							3
4				0.04									4
5							1.02		1.54				5
6							0.75		0.35				6
7							0.23		1.06				7
8					0.23					0.08			8
9					0.04		0.04						9
10					0.04	0.04	0.08		0.04				10
11						0.39			1.22				11
12													12
13						0.08	0.04		0.36				13
14			0.08						0.20				14
15				0.04	0.28		0.04						15
16							0.08						16
17								0.67					17
18							0.28	0.19					18
19	1.69					0.51	0.86						19
20	0.24								0.04				20
21						0.28			0.04				21
22						0.47	0.16			0.12			22
23							0.08						23
24						0.04							24
25					0.08								25
26													26
27													27
28													28
29													29
30							0.27						30
31							1.11						31
Total	1.93	0.00	0.08	0.08	1.26	1.85	5.04	0.86	4.85	0.20	0.00	0.00	
Cum. Total	1.93	1.93	2.01	2.09	3.35	5.20	10.24	11.10	15.95	16.15	16.15	16.15	

(inches)

Station Name and no. Los Osos Landfill #727 Season 2014-2015

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1									0.43				1
2						0.51							2
3													3
4						0.67							4
5						0.04							5
6								0.12					6
7								0.51					7
8					0.04			0.20					8
9													9
10								0.08					10
11					0.04	1.22							11
12						1.22							12
13					0.04								13
14											0.12		14
15						0.71				0.47			15
16						0.71							16
17						0.08							17
18						0.04							18
19					0.08								19
20													20
21													21
22					0.04								22
23													23
24													24
25										0.20			25
26													26
27							0.08						27
28													28
29					0.04								29
30													30
31													31
Total	0.00	0.00	0.00	0.00	0.28	5.20	0.08	0.91	0.43	0.67	0.12	0.00	
Cum. Total	0.00	0.00	0.00	0.00	0.28	5.47	5.55	6.46	6.89	7.56	7.68	7.68	

(inches)

Station Name and no. Los Osos Landfill #727 Season 2013-2014

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1									0.59	0.24			1
2								0.87	0.20	0.28			2
3								0.04					3
4													4
5													5
6								0.31					6
7						0.12							7
8								0.04					8
9								0.04					9
10								0.08					10
11													11
12													12
13													13
14								0.04					14
15													15
16													16
17													17
18													18
19													19
20					0.20								20
21					0.08								21
22													22
23													23
24													24
25										0.16			25
26								0.87	0.04	0.04			26
27								0.28					27
28				0.24				1.50					28
29									0.16				29
30									0.04				30
31									0.39				31
Total	0.00	0.00	0.00	0.24	0.28	0.12	0.00	4.06	1.42	0.71	0.00	0.00	
Cum. Total	0.00	0.00	0.00	0.24	0.51	0.63	0.63	4.69	6.10	6.81	6.81	6.81	

(inches)

Station Name and no. Los Osos Landfill #727 Season 2012-2013

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1						0.12				0.28			1
2						0.55							2
3													3
4										0.04			4
5							0.39						5
6							0.31				0.12		6
7									0.24				7
8								0.47	0.08				8
9					0.04								9
10				0.24									10
11				0.87									11
12						0.04							12
13													13
14									0.04				14
15						0.04							15
16					0.08	0.08							16
17					0.47	0.16							17
18					0.24								18
19								0.20					19
20													20
21				0.04									21
22						0.75							22
23						0.24							23
24							0.28					0.04	24
25						0.28	0.04						25
26						0.04							26
27													27
28					0.55								28
29					0.08	0.35							29
30				0.04	0.24				0.04				30
31									0.04				31
Total	0.00	0.00	0.00	1.18	1.69	2.64	1.02	0.67	0.43	0.31	0.12	0.04	
Cum. Total	0.00	0.00	0.00	1.18	2.87	5.51	6.54	7.20	7.64	7.95	8.07	8.11	_

(inches)

Station Name and no. Los Osos Landfill # 727 Season 2011-2012

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1													1
2													2
3				0.08	0.04								3
4				0.04	0.28								4
5				0.91									5
6					0.28								6
7								0.04					7
8													8
9													9
10				0.04				0.04		0.55			10
11					0.31					0.16			11
12						0.16				0.28			12
13								0.08		1.02			13
14													14
15								0.08					15
16									0.12				16
17									1.46				17
18									0.12				18
19													19
20					1.26		0.20						20
21							0.87						21
22													22
23							1.22						23
24													24
25									0.63	0.20			25
26		0.04								0.04			26
27													27
28									0.16				28
29								0.12					29
30		0.04	0.04										30
31									0.20				31
	0.00	0.00	0.51	4.00	0.1-	0.10	0.00	0.5-	0.00	0.51	0.00	0.00	
Total	0.00	0.08	0.04	1.06	2.17	0.16	2.28	0.35	2.68	2.24	0.00	0.00	
Cum. Total	0.00	0.08	0.12	1.18	3.35	3.50	5.79	6.14	8.82	11.06	11.06	11.06	

(inches)

Station Name and no. Los Osos Landfill #727 Season 2010-2011

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1							0.39						1
2							2.52		0.08				2
3													3
4			0.04			0.04			0.04			0.59	4
5				0.31		0.75						0.35	5
6				0.24	0.04				0.12			0.12	6
7					0.47								7
8													8
9						0.04							9
10					0.04								10
11									0.04				11
12													12
13						0.04							13
14								0.04					14
15						0.04					0.16		15
16								0.59	0.08		0.16		16
17			0.04	0.04		0.43		0.47			0.16		17
18				0.08		2.95		1.54	0.47		0.08		18
19					0.24	2.24		0.55	2.28				19
20			0.04		0.71	1.06		0.04	2.91				20
21				0.04	0.24	0.35			0.24	0.28			21
22				0.04		1.57			0.04				22
23				0.08	0.12				0.87				23
24				0.28					0.63				24
25						0.79		0.51	0.04				25
26								0.04	0.16				26
27													27
28						0.31			0.04				28
29				0.35		0.83					0.04	0.04	29
30				0.08									30
31							0.12						31
Total	0.00	0.00	0.12	1.54	1.85	11.46	3.03	3.78	8.03	0.28	0.59	1.10	
Cum. Total	0.00	0.00	0.12	1.65	3.50	14.96	17.99	21.77	29.80	30.08	30.67	31.77	

Season Total 31.77

(inches)

Station Name and no. Los Osos Landfill #727 Season 2009-2010

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1										0.04			1
2									0.08				2
3									0.43				3
4								0.08	0.04				4
5								0.51		0.31			5
6								0.39	0.20				6
7						0.47							7
8									0.04				8
9								0.63					9
10						0.75			0.04				10
11										0.98			11
12						1.22	0.51		0.08	0.08			12
13				5.43		0.04	0.31	0.04					13
14				0.79		0.04							14
15													15
16													16
17							0.55				0.04		17
18							1.14						18
19							0.91						19
20					0.04		2.36	0.04		0.51			20
21						0.16	2.01	0.12					21
22							1.22		0.04				22
23			0.04				0.04	0.04					23
24								0.39					24
25													25
26							0.59	1.42					26
27						0.08		0.47					27
28													28
29							0.08		0.04				29
30						0.12	0.04		0.04				30
31									0.12				31
Total	0.00	0.00	0.04	6.22	0.04	2.87	9.76	4.13	1.14	1.93	0.04	0.00	
Cum. Total	0.00	0.00	0.04	6.26	6.30	9.17	18.94	23.07	24.21	26.14	26.18	26.18	_

Season Total 26.18

(inches)

Station Name and no. Los Osos Landfill #727 Season 2008-2009

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1					0.04						0.04		1
2							0.08		0.16		0.12		2
3									0.59				3
4				0.04					0.08				4
5											0.04	0.35	5
6								0.87					6
7										0.20			7
8													8
9								1.10					9
10													10
11								0.04					11
12								0.04					12
13								0.63					13
14								0.04					14
15													15
16						0.12							16
17								1.10					17
18													18
19													19
20													20
21						0.08							21
22						0.43		0.47	0.24				22
23							0.51	0.31					23
24							0.12						24
25						0.12							25
26													26
27													27
28													28
29													29
30													30
31													31
Total	0.00	0.00	0.00	0.04	0.04	0.75	0.71	4.61	1.06	0.20	0.20	0.35	
Cum. Total	0.00	0.00	0.00	0.04	0.08	0.83	1.54	6.14	7.20	7.40	7.60	7.95	

Season Total 7.95

(inches)

Station Name and no. Los Osos Landfill #727 Season 2007-2008

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1								0.08					1
2					0.04			0.24		0.20			2
3								1.02		0.04			3
4							3.66						4
5							0.20						5
6						0.24	0.39						6
7						0.08							7
8							0.08						8
9							0.04						9
10													10
11					0.08								11
12													12
13													13
14													14
15													15
16				0.28									16
17				0.08									17
18						2.24							18
19								0.20					19
20						0.12		0.16					20
21							0.08	0.08					21
22							2.32	0.12					22
23							1.06	0.87					23
24							0.87	0.24					24
25							0.31						25
26							0.63						26
27				0.08			0.67						27
28							0.08						28
29							0.04						29
30							0.04						30
31													31
Total	0.00	0.00	0.00	0.43	0.12	2.68	10.47	2.99	0.00	0.24	0.00	0.00	
Cum. Total	0.00	0.00	0.00	0.43	0.55	3.23	13.70	16.69	16.69	16.93	16.93	16.93	_

Season Total 16.93

(inches)

Station Name and no. Los Osos Landfill #727 Season 2006-2007

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1													1
2								0.04					2
3													3
4							0.12				0.04		4
5													5
6													6
7								0.20					7
8						0.39							8
9						0.94							9
10						0.31		0.71					10
11					0.08								11
12								0.04					12
13				0.08	0.20								13
14					0.08								14
15													15
16													16
17					0.04	0.04	0.04						17
18													18
19										0.04			19
20									0.28	0.24			20
21						0.04							21
22								0.87		0.08			22
23				0.04				0.12					23
24													24
25								0.08					25
26					0.04	0.43		0.16	0.08				26
27						0.12	0.83	0.20	0.08				27
28							0.20	0.16					28
29							0.08						29
30													30
31													31
Total	0.00	0.00	0.00	0.12	0.43	2.28	1.26	2.56	0.43	0.35	0.04	0.00	
Cum. Total	0.00	0.00	0.00	0.12	0.55	2.83	4.09	6.65	7.09	7.44	7.48	7.48	

Season Total 7.48

(inches)

Station Name and no. Los Osos Landfill # 727 Season 2005-2006

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1							1.61						1
2			0.63			0.55	2.32			0.24			2
3								0.04		1.18			3
4										0.59			4
5										0.39			5
6													6
7										0.08			7
8						0.47							8
9					0.59				0.04				9
10									0.28	0.43			10
11		0.16			0.04				0.12				11
12		0.04							0.28				12
13								-					13
14	0.04						0.24	-	0.04	0.04			14
15								-					15
16								1		0.08			16
17				0.12				-	0.24	0.04			17
18						0.16	0.16	3.66					18
19								-					19
20				0.04				-	0.35				20
21						0.04			0.04		2.60		21
22						0.04		-			0.04		22
23						0.04		-					23
24								-					24
25					0.08	0.12		-	0.12				25
26				0.08		0.04	0.08	1		0.63			26
27								-	0.43				27
28						0.12			1.38				28
29									0.16				29
30					0.04		0.04						30
31						0.94			0.43				31
Total	0.04	0.20	0.63	0.24	0.75	2.52	4.45	3.70	3.90	3.70	2.64	0.00	
Cum. Total	0.04	0.24	0.87	1.10	1.85	4.37	8.82	12.52	16.42	20.12	22.76	22.76	

Season Total 22.76

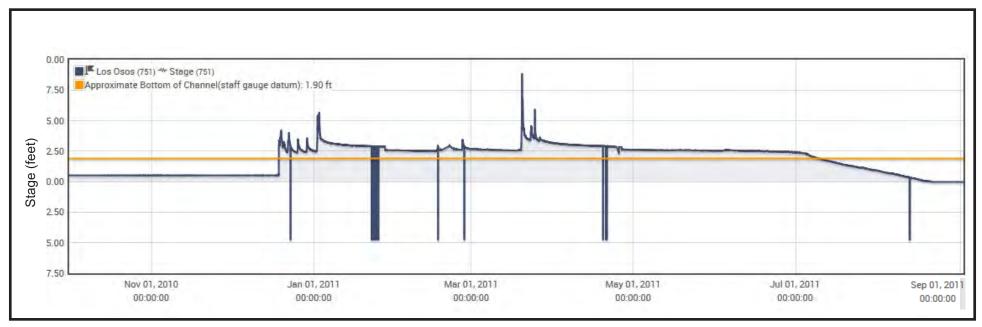


Figure H1 Stream Stage for 2011 Water Year Los Osos Creek, Gage #751

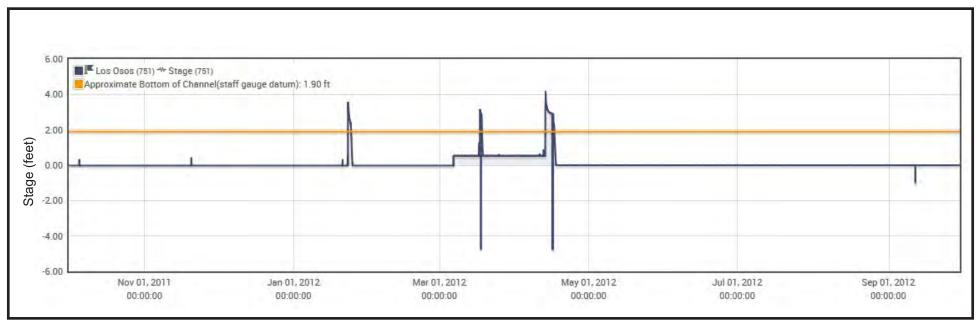


Figure H2 Stream Stage for 2012 Water Year Los Osos Creek, Gage #751

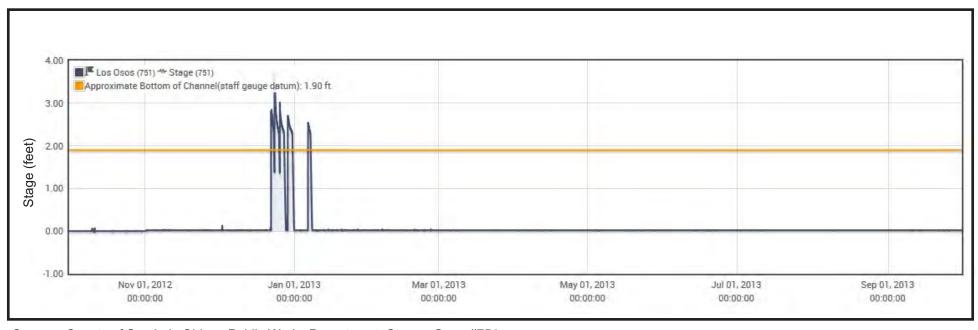


Figure H3 Stream Stage for 2013 Water Year Los Osos Creek, Gage #751

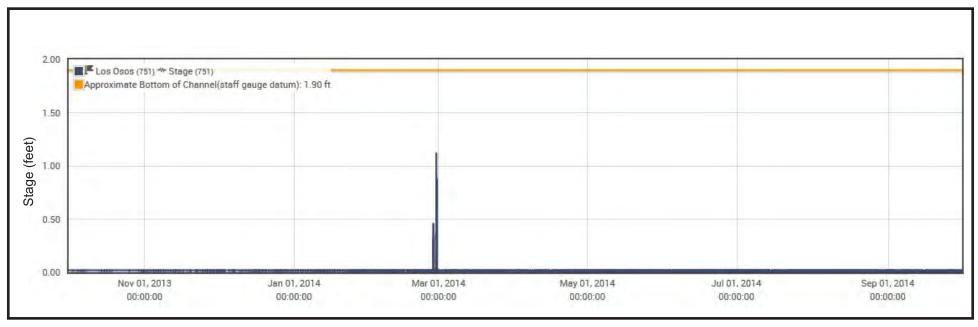


Figure H4 Stream Stage for 2014 Water Year Los Osos Creek, Gage #751

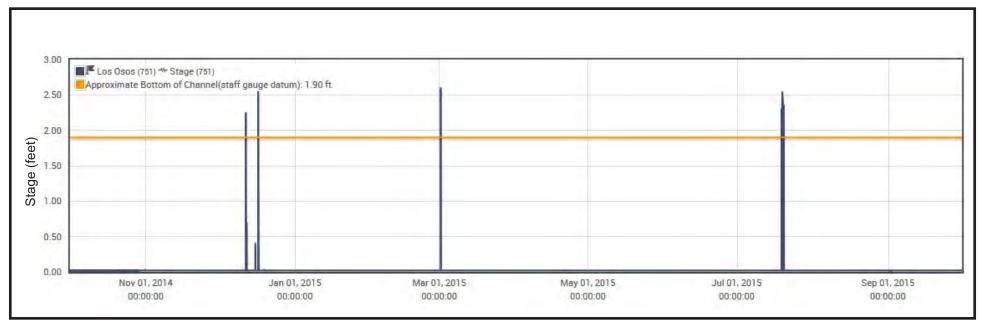


Figure H5 Stream Stage for 2015 Water Year Los Osos Creek, Gage #751

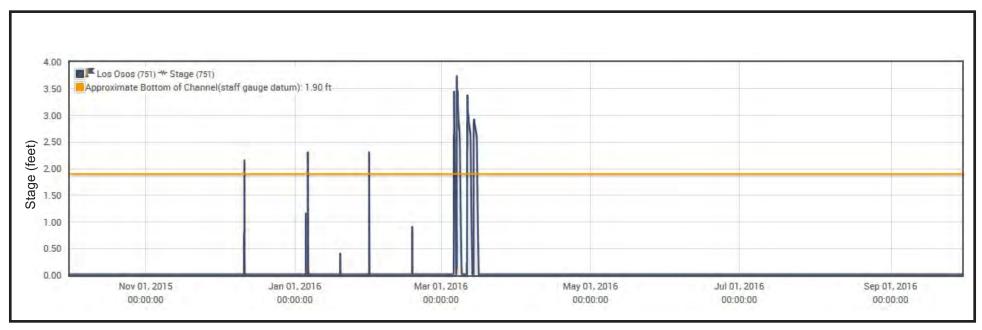


Figure H6 Stream Stage for 2016 Water Year Los Osos Creek, Gage #751

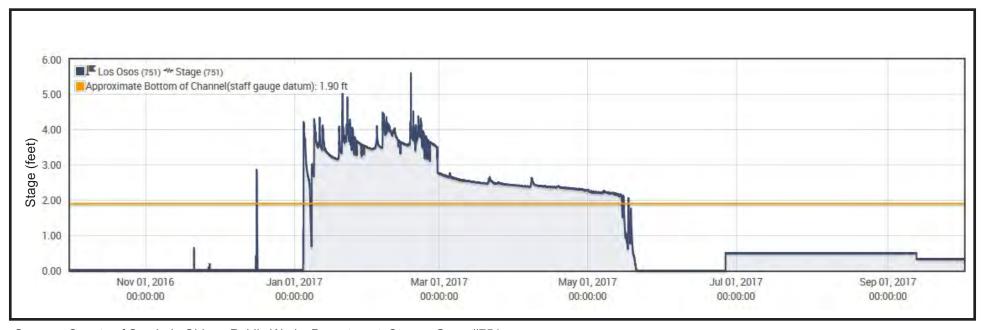


Figure H7 Stream Stage for 2017 Water Year Los Osos Creek, Gage #751

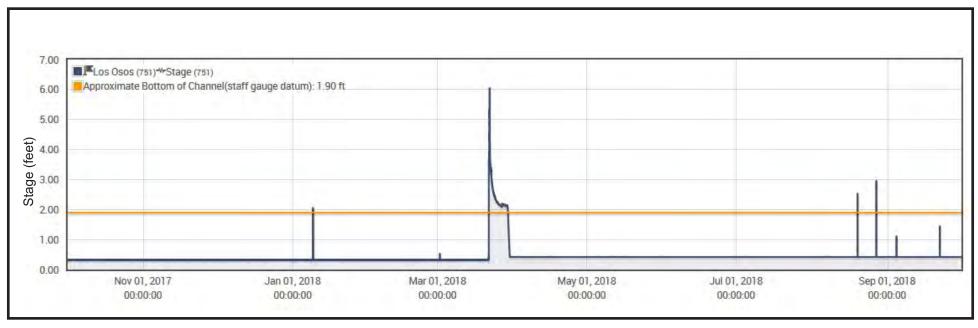


Figure H8 Stream Stage for 2018 Water Year Los Osos Creek, Gage #751

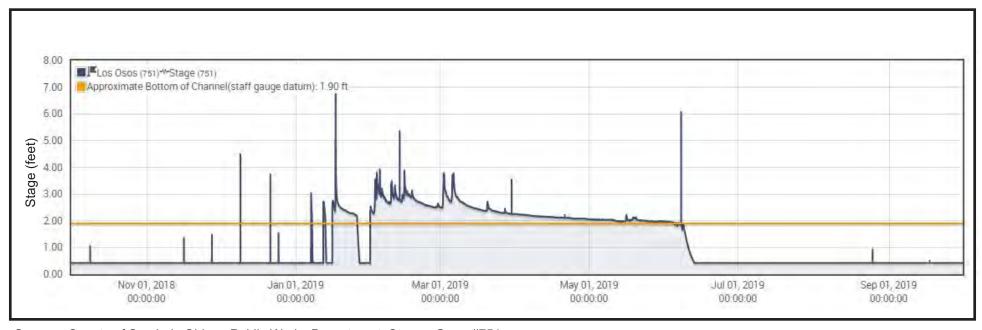


Figure H9 Stream Stage for 2019 Water Year Los Osos Creek, Gage #751

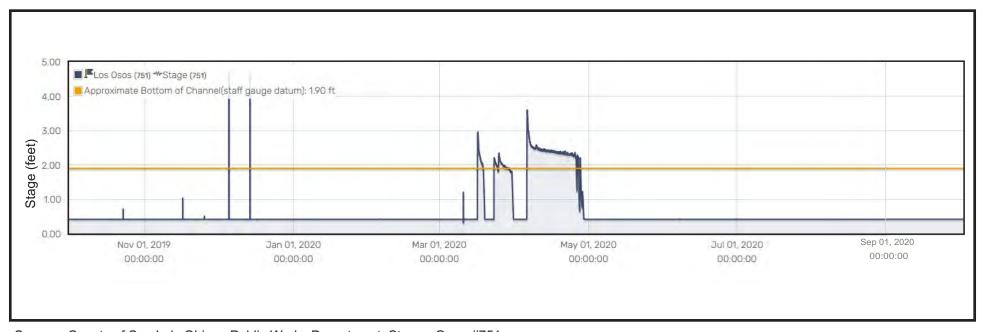


Figure H10 Stream Stage for 2020 Water Year Los Osos Creek, Gage #751

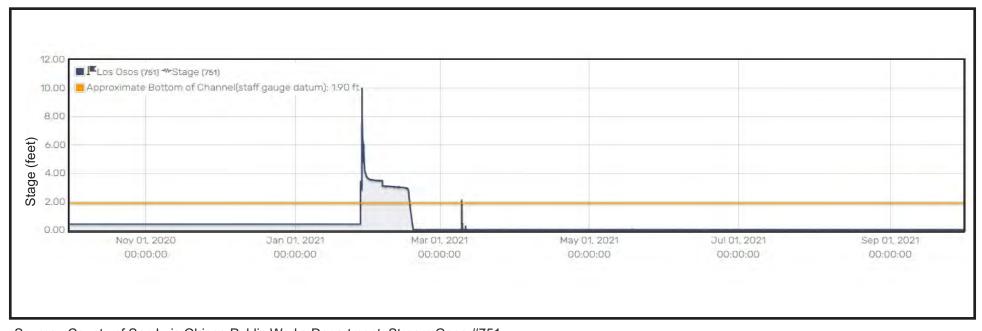


Figure H11 Stream Stage for 2021 Water Year Los Osos Creek, Gage #751

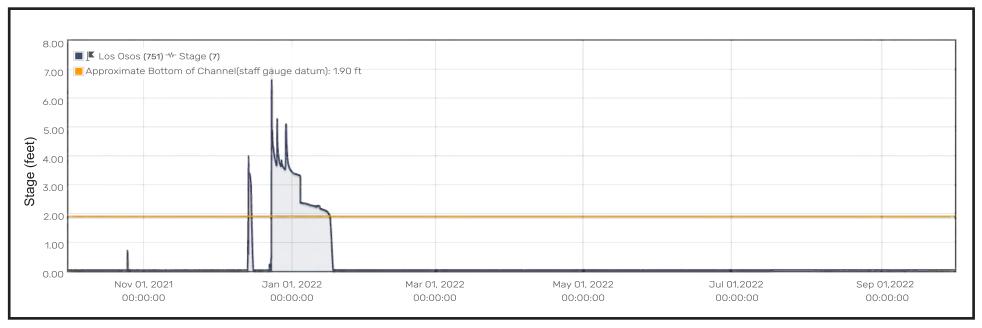


Figure H12 Stream Stage for 2022 Water Year Los Osos Creek, Gage #751

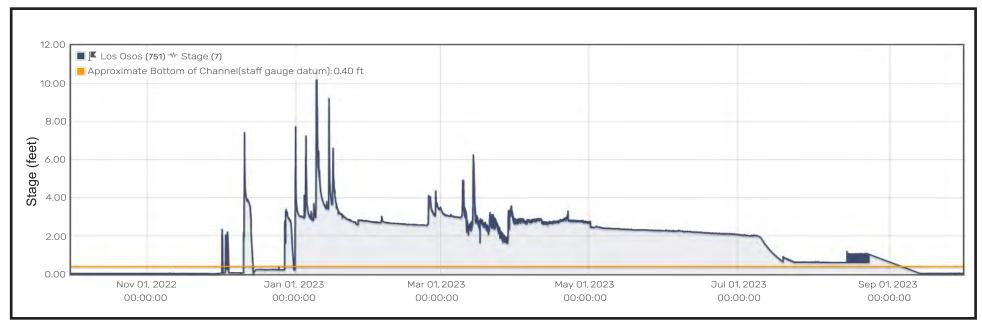
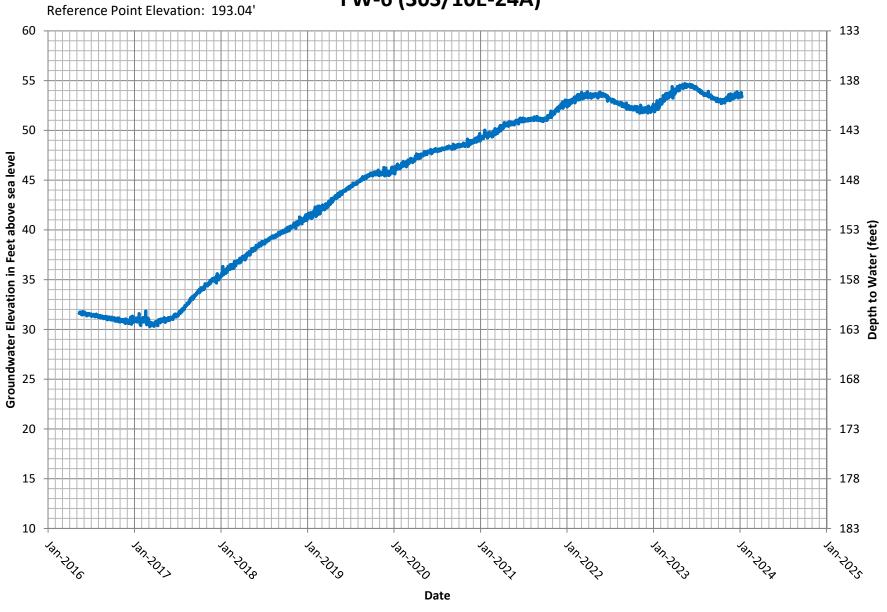
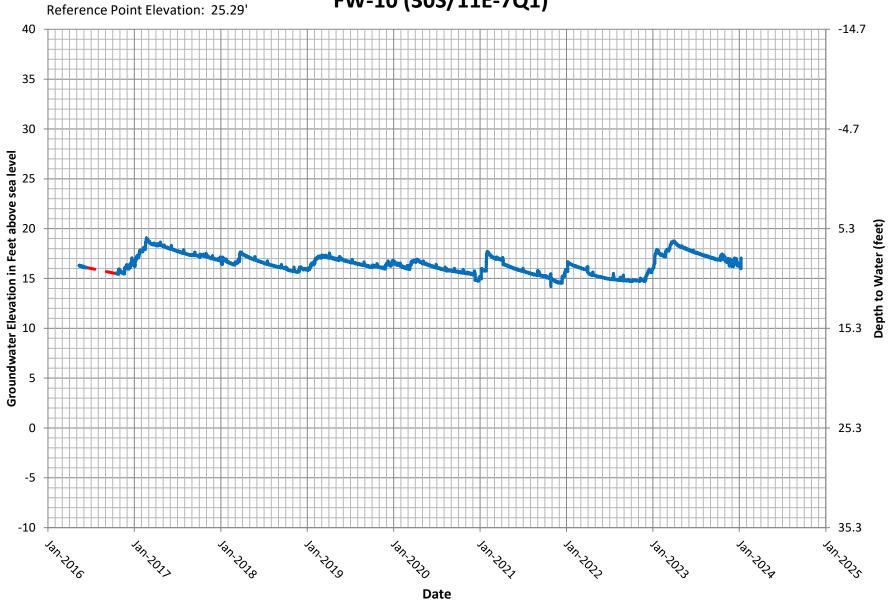
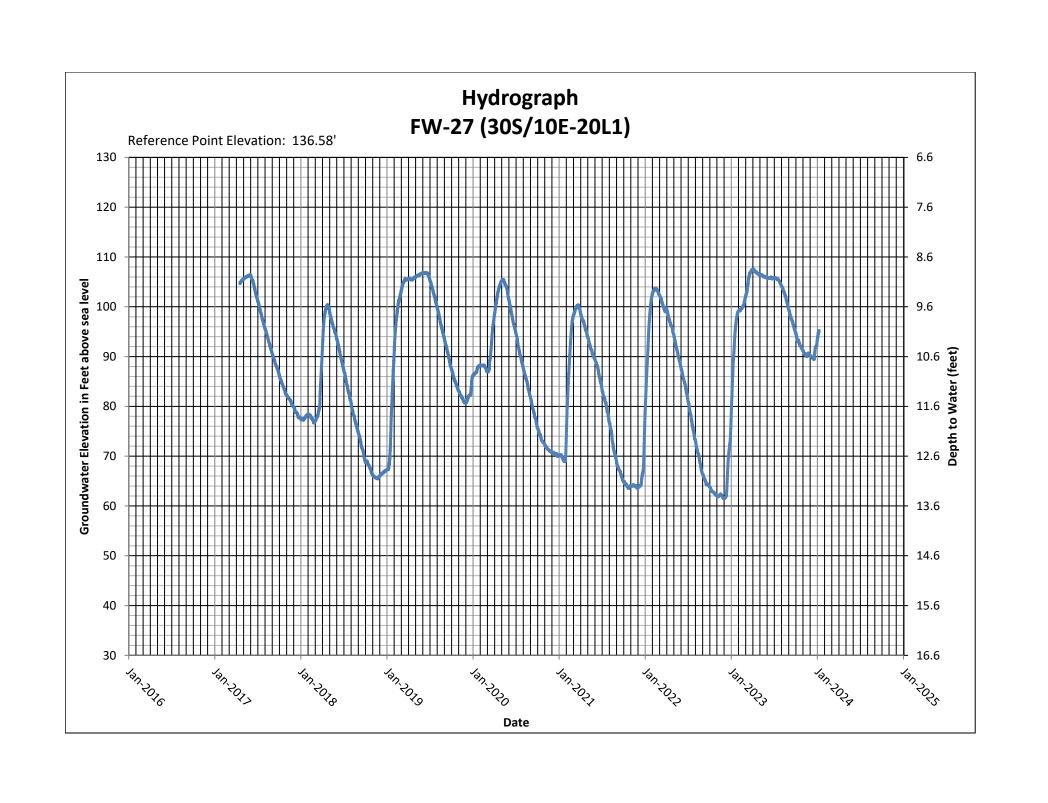
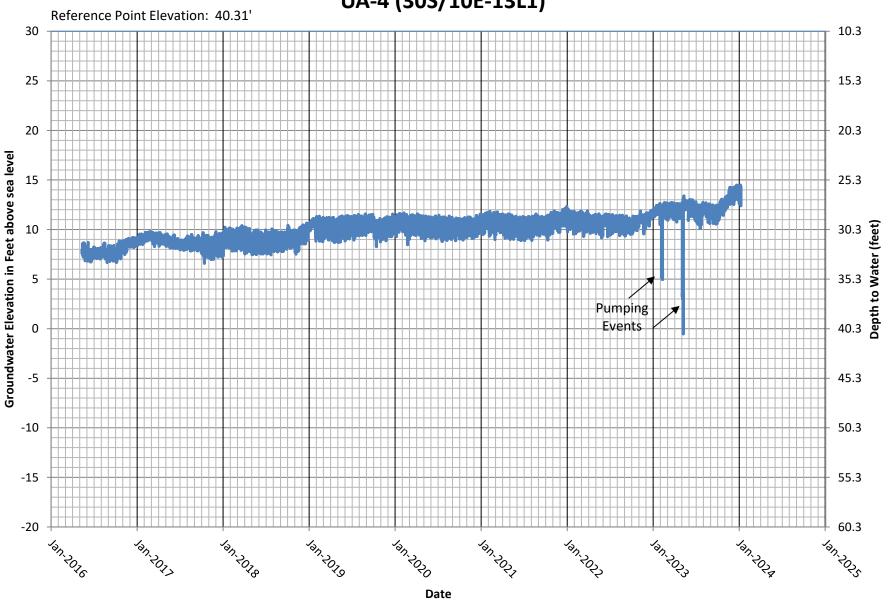



Figure H13 Stream Stage for 2023 Water Year Los Osos Creek, Gage #751

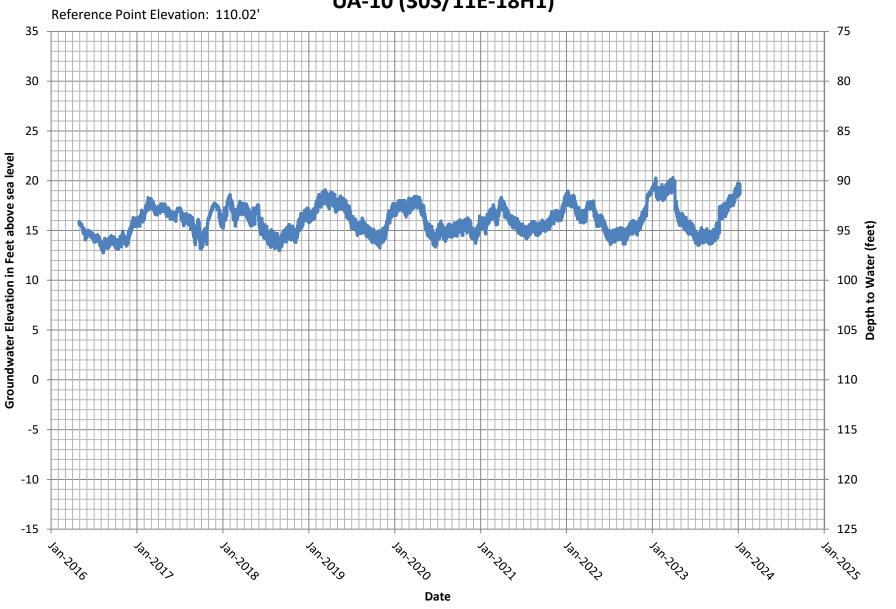

APPENDIX H

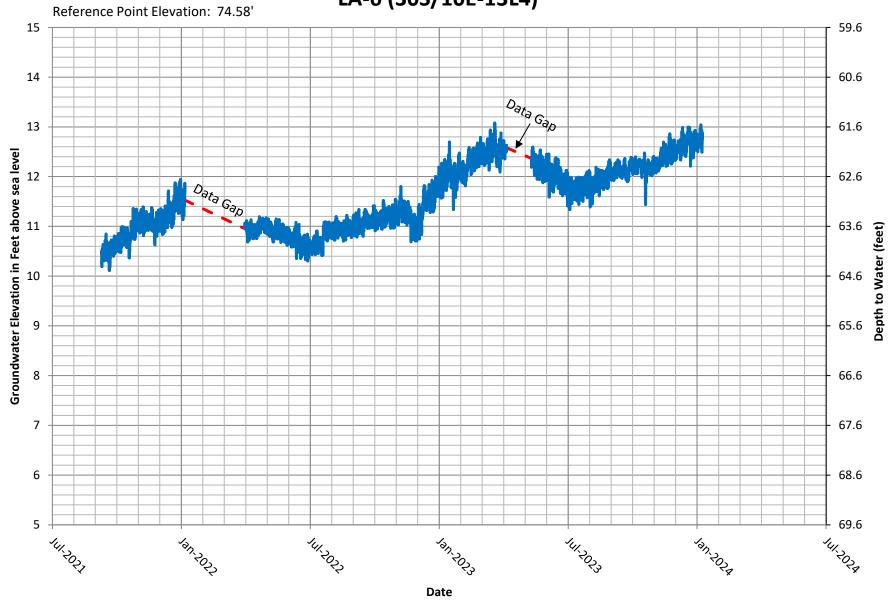

Transducer Hydrographs

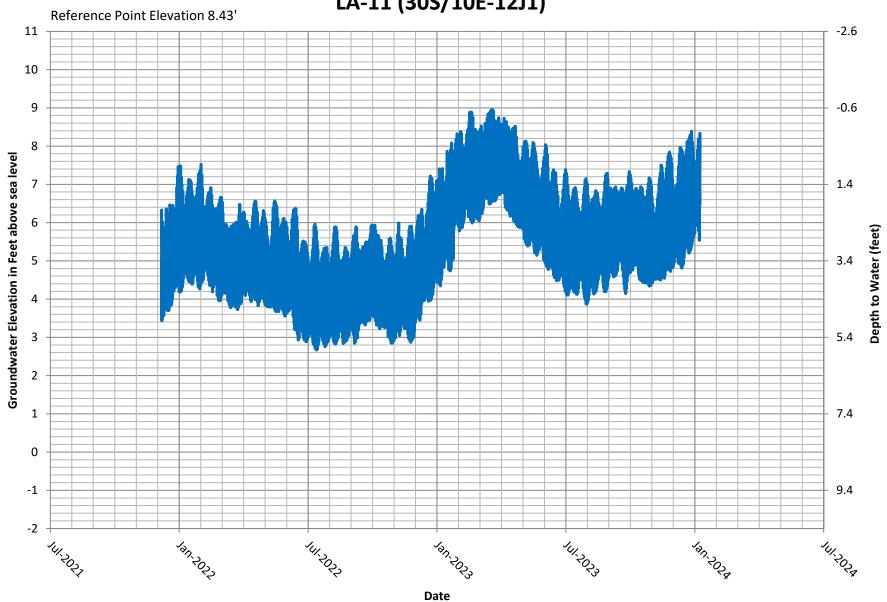
Hydrograph FW-6 (30S/10E-24A)

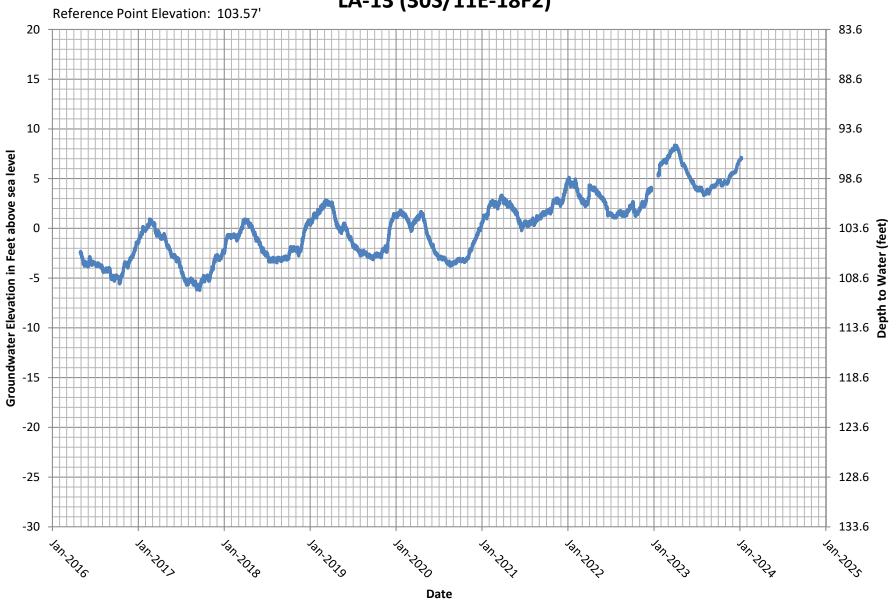


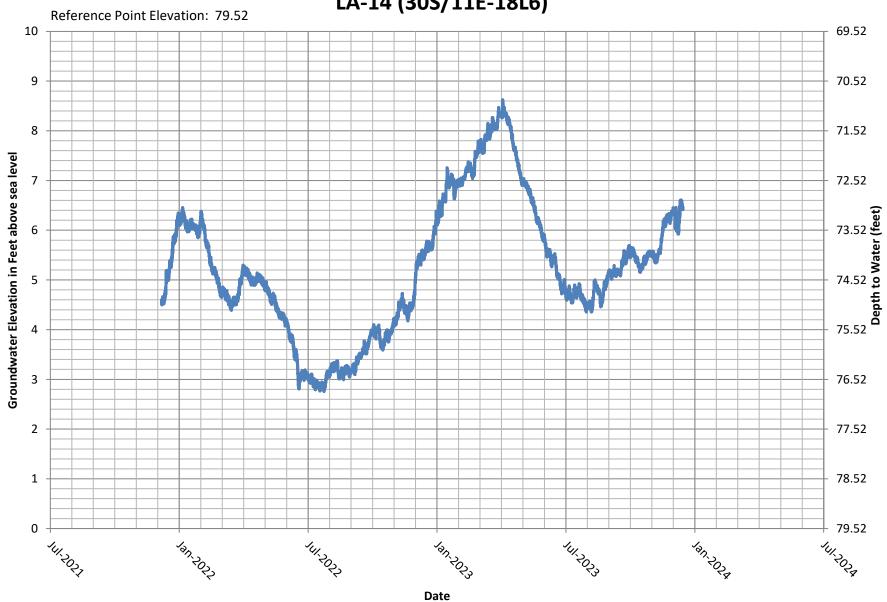
Hydrograph FW-10 (30S/11E-7Q1)

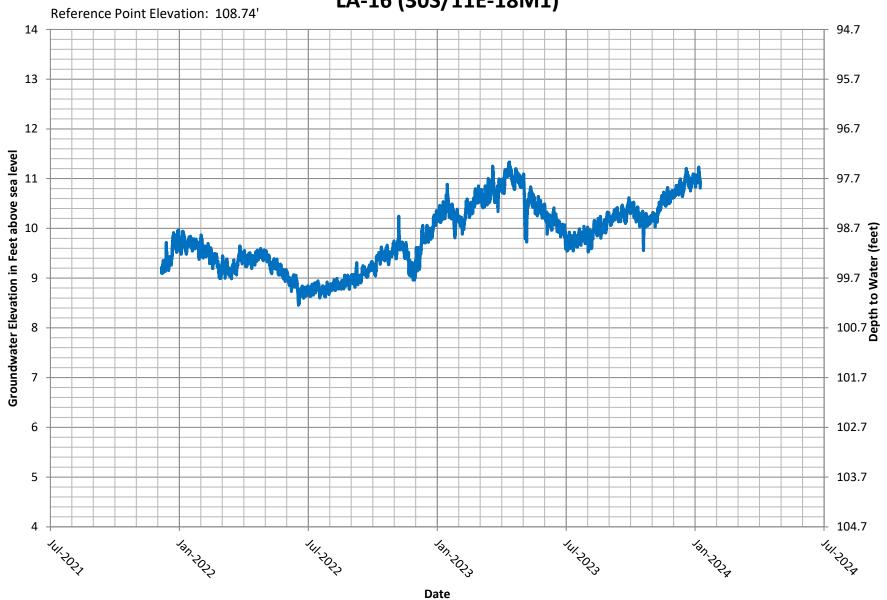


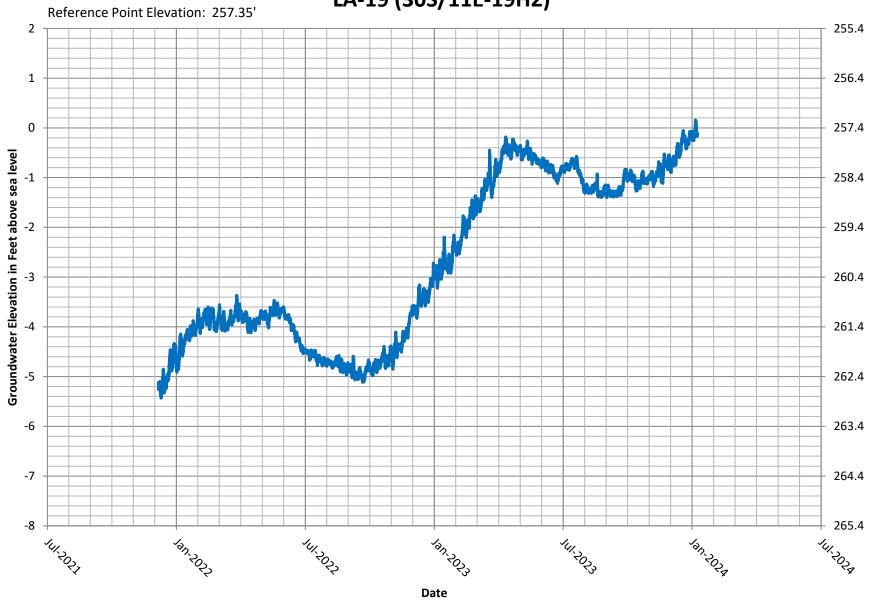

Hydrograph UA-4 (30S/10E-13L1)

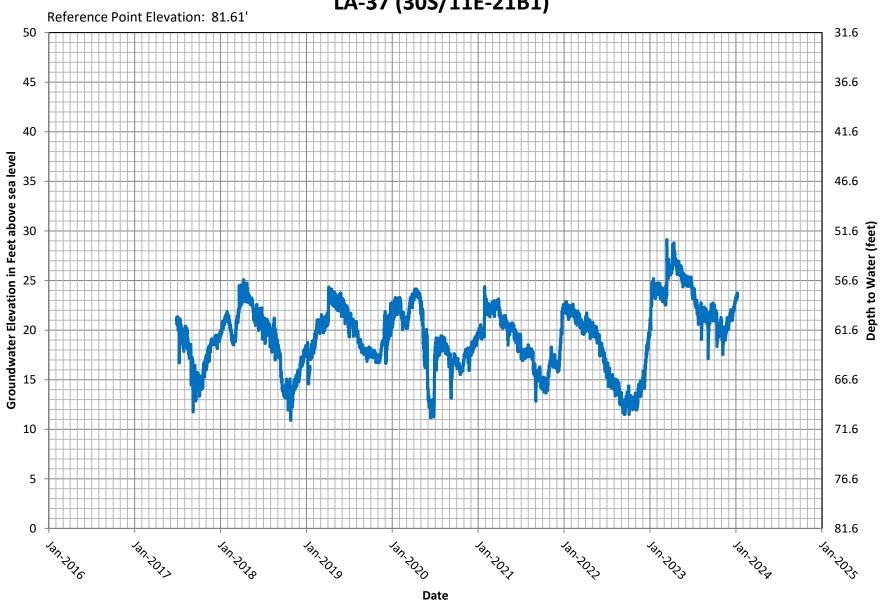

Hydrograph UA-10 (30S/11E-18H1)

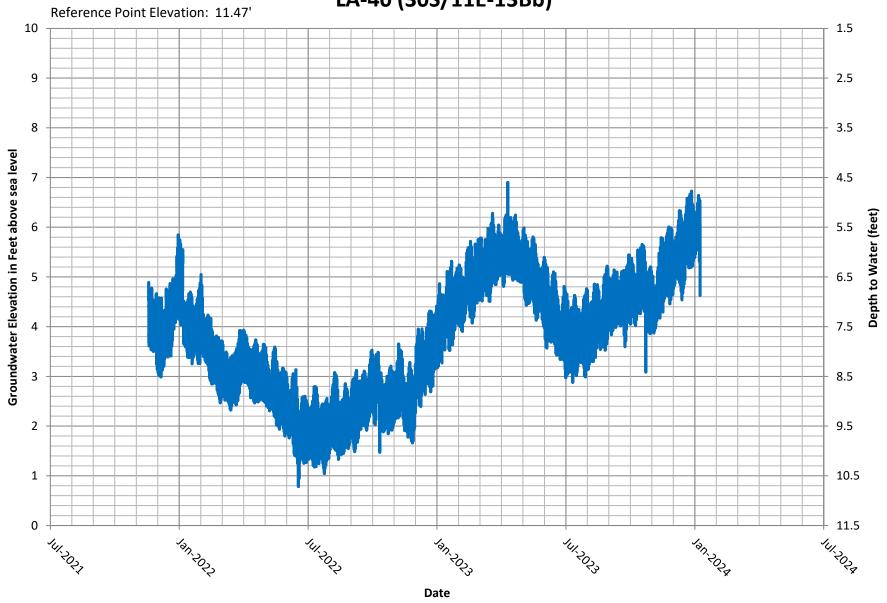

Hydrograph LA-6 (30S/10E-13L4)

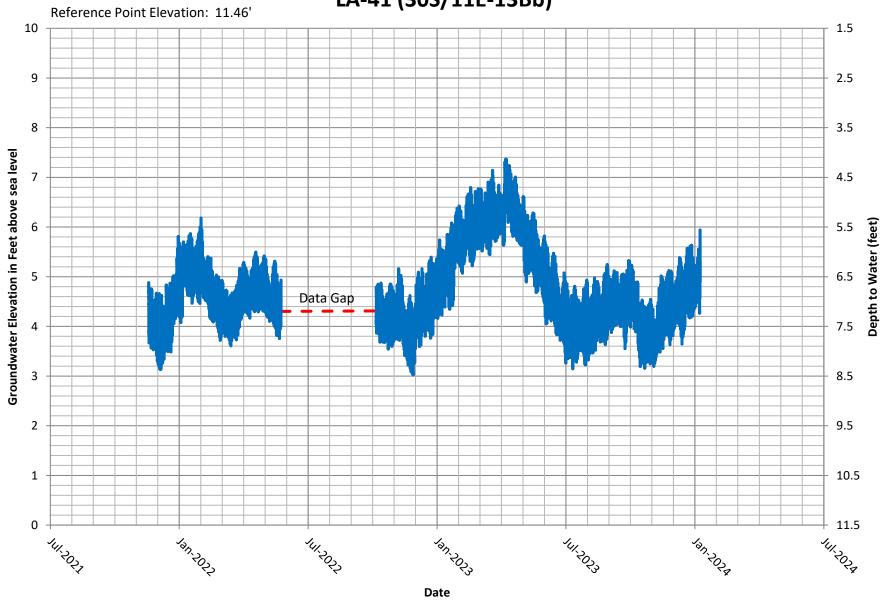

Hydrograph LA-11 (30S/10E-12J1)


Hydrograph LA-13 (30S/11E-18F2)


Hydrograph LA-14 (30S/11E-18L6)


Hydrograph LA-16 (30S/11E-18M1)


Hydrograph LA-19 (30S/11E-19H2)


Hydrograph LA-37 (30S/11E-21B1)

Hydrograph LA-40 (30S/11E-13Bb)

Hydrograph LA-41 (30S/11E-13Bb)

APPENDIX I

Historical Water Quality for Lower Aquifer Wells

Los Osos BMC Water Quality Results - Lower Aquifer Monitoring

Station ID	Well Name	Basin Plan	Aquifer	Date	НСО3	Total Hardness	Cond	рН	TDS	CI	NO3-N	SO4	Ca	Mg	K	Na
Cidion	Well Name	Well ID	Zone		mg/l	mg/l	µmhos/ cm		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
	Sand Spit #1			3/14/2005	180		16000	7.3	8900	5400				640		1300
30S/10E-11A2	East	LA2	D	10/21/2015	150	6640	17700	7.4	13100	6300				990	31	
	Lact			11/5/2020	220	6700	18000	7.7	15300	5890			1140	936	38	1560
				2/14/2005	350	370	1300	8.1	840	77	ND		51	58	6.1	110
				11/20/2009	300	360	1150	7.5	732	83			51	58	4.4	95
				7/24/2014	360	489	1290	7.7	780	105	ND		69	77	5	
				4/22/2015	360	475	1290	7.8	810	112	ND		65	76	5	
				10/1/2015	250	486	1280	7.3	840	117	ND		68	77	4	
				4/20/2016	330	524	1370	n/a	840	151	ND		73	40	5	
				10/10/2016	350	497	1370	7.1	930	173			69	79	4	.
				4/11/2017	350	541	1380	7.5	880	167	ND		75	86	4	0.
				10/4/2017	300	543	1370	7	850	162	ND		76	86	5	
	MBO5 DWR Obs.			4/10/2018	350	595	1390	7.6	820	173			85	93	5	
30S/10E-12J1		LA11	Е	10/2/2018	350	497	1340	7.4	870	160	ND	160	69	79	3	
				4/9/2019	350	539	1430	7.4	860	196		189	76	85	4	
				10/2/2019	250	290	1520	7.6	1000	187	ND	189	80	90	5	
				4/14/2020	350	667	1580	7	950	222	ND	187	81	113	5	
				10/1/2020	350	763	1650	7.1	1040	242	ND	183	85	134	5	
				4/5/2021	345	612	1630	7.6	1050	256	ND	192	88	96	5	
				10/6/2021	340	569	1710	7.3	1020	258	ND	176	83	88	5	
				4/13/2022	330	620	1800	7.3	1020	287	ND	183	90	96	4	•
				10/6/2022	350	633	1720	7.7	1220	279	ND	195	89	100	5	
				4/13/2023	350	653	1840	7.2	1040	346	ND	188	92	103	5	
				10/4/2023	340	715	1910	7.4	1300	350	ND	188	102	112	5	
				11/7/2019	210	312	1310	7.7	760	136	3.1	188	69	34	4	140
				4/8/2020	310	204	943	7.1	560	68	0.3	109	44	23	2	101
				10/8/2020	340	263	920	7.1	490	52	0.1	89.4	51	33	2	
				4/14/2021	333	289	855	7.9	505	66	ND	86	53	38	2	60
30S/10E-13Bb	Lupine Zone D	LA41		10/11/2021	340	309	812	7.2	460	48	ND	80	58	40	2	64
				4/12/2022	330	309	818	8.3	500	47	ND	67	58	40	2	58
				10/11/2022	340	315	766	7.6	470	48	ND	71	62	39	2	
				4/11/2023	340	260	764	7.5	440	51		58	48	34	2	47
				10/23/2023	340	281	754	7.0	460	48	ND	57	50	38	2	

0:	VA/ 11.51	Basin Plan	Aquifer	5 /	НСО3	Total Hardness	Cond	рН	TDS	CI	NO3-N	SO4	Ca	Mg	K	Na
Station ID	Well Name	Well ID	Zone	Date	mg/l	mg/l	µmhos/ cm		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
				11/6/2019	210	2090	5330	7	4750	1460	1.3	224	388	272	6	182
				4/7/2020	240	3300	7360	7.6	6340	2190	0.3	202	569	458	7	203
				10/7/2020	270	4100	8220	6.9	7930	2220	ND	192	720	560	8	217
				4/15/2021	274	3760	8590	7.4	6760	2510	ND	217	558	576	7	210
30S/10E-13Ba	Lupine Zone E	LA40	Е	10/13/2021	270	3540	8930	7.4	7430	2910	ND	201	544	530	6	190
				4/14/2022	270	3780	8790	7.3	6790	2410	ND	187	523	601	6	178
				10/12/2022	280	3860	8860	7.5	8340	2900	ND	221	569	594	7	186
				4/12/2023	280	4570	9020	7.3	5870	2820	ND	232	575	762	7	198
				10/24/2023	280	4450	9200	6.9	9610	3200		259	764	619	6	201
				12/20/2004	72	230	720	7.1	410	150		14	38	33	1.4	29
				1/14/2010	35	260	778	6	435	200		13	41	38	1.5	33
				7/24/2014	80	418	1200	7.3	910	303		16	67	61	2	39 39
				4/22/2015	80	431	1230	7.1	750	331	1.9	20	69	63	2	39
				10/5/2015	70	460	1280	7	950	329		19	74	67	2	41
				4/26/2016		412	1170	7.1	840	299		18	66	60		37
				10/12/2016	60	509	1430	6.8	1100			26.7	82	74	2	44
30S/10E-13J1*				4/10/2017	80	327	957	6.9	720	300			52	48		35 33 29
Highlighted				10/12/2017	80	245	702	6.9	510			12.5	39	36		33
chloride values				4/24/2018	70	188	620	7.4	400	190			29	28	1	29
have been	GSWC Rosina	LA10	D,E	10/9/2018	70	265	730	7.1	450	210			42	39		34
adjusted for				4/15/2019	80	251	744	7	600	174		10.4	38	38	2	31
wellbore leakage				10/14/2019	80	332	961	7.1	830	229		12.7	54	48	1	33
go				4/21/2020	80	353	1310	6.4	970	250		14.2	59	50	2	32
				10/7/2020	70	183	618	7.6	430			_	29	27	1	33 36
				4/6/2021	81	405	1110	7.6	815			_	66	58	2	36
				10/8/2021	80	413	1180	7.2	790	289		16.8	65	61	2	37
				4/18/2022	70	192	612	7.1	420	220		14.9	29	29	1	37
				12/5/2022	90	327	911	7.7	690	235		13.4	52	48	2	33
				5/8/2023	80	303	892	7.1	690	211	2	12.5	49	44	2	51
				10/10/2023	80	277	805	7.6	610	235	3.2	13.2	45	40	2	35

Station ID	Well Name	Basin Plan	Aquifer	Date	НСО3	Total Hardness	Cond	рН	TDS	CI	NO3-N	SO4	Ca	Mg	K	Na
Station id	well Name	Well ID	Zone	Date	mg/l	mg/l	µmhos/ cm		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
				11/22/2004	51	810	2900	7.3	1500	810	0.5	140	60	120	4.7	210
				12/9/2009		1100										
				8/4/2014	60	757	3340	7.1	2450					113		
				4/21/2015		739		7.3						113		382
				10/6/2015		756		7.1	2140							_
				4/20/2016		726		7.2	2190			179			5	400
				10/19/2016		722	3420	7.4	2190				113		4	398
30S/10E-13M2				4/17/2017	60	733										413
4/1/2021 sample				10/5/2017	60	738						160		-		
results show			0.5	4/24/2018		664		7.2	2020	946						367
Upper Aquifer	Howard East	LA31	C,D	10/17/2018		740										
influence due to				4/3/2019	_	640		7.8								341
reduced pumping				10/3/2019		574		7.4				169				340
				4/9/2020		519		7.8								258
				10/1/2020		774		8				169 47			5 20	
				4/1/2021	218		1010			161			31		20	
				11/4/2021	70 70	509								77	4	305
				5/11/2022 10/6/2022	70	388 506		7.6 8.3				134 145				303 268
								7.1	1370				79 52			272
				4/4/2023 11/7/2023	70	352 425	2180 2340	8.0				121 131	68	54 62	3	247

Station ID	Well Name	Basin Plan	Aquifer	Date	НСО3	Total Hardness	Cond	рН	TDS	CI	NO3-N	SO4	Ca	Mg	K	Na
Station id	Well Name	Well ID	Zone	Date	mg/l	mg/l	µmhos/ cm		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
				11/23/2004	42	80	390	6.9	200	67	5.9	9.2	13	12	1.7	38
				11/19/2009	41	89	386	6.8	267	73	6.1	11	15	13	1.4	38
				7/24/2014	50	100	438	7.4	270			10	17	14	2	38
				4/21/2015		98	445	6.9				11	16		2	38
				10/6/2015		98	422	7.2	310			10			1	38
				4/20/2016		97.5	446	7	320			12	16		1	38
				10/13/2016		104	470	8	320			12	17	15	1	40
				4/11/2017	50	100		7.4	270				17	14	1	38
				10/2/2017	30	95	438	7.2	290				15		1	36
				4/11/2018		104	440	7	260				17	15		39
30S/10E-13N	S&T #5	LA8	D	10/3/2018		107	430					12.9			2	40
				4/3/2019		100	434	6.3					17	14	1	36
				10/7/2019	60	95	446	7.6	250				15	14	1	37
				4/13/2020	60	104	443	8	300				17	15		37
				10/1/2020		108		7.9					17	16		40
				4/6/2021	63	103	438	7.4	302	78			17	15		38
				10/8/2021	60	108	443	7.8	290					16		
				4/13/2022	60	106	449	8.1	270							40
				10/4/2022	60	108	432	7.4	280				17	16	2	
				4/13/2023	60	139	443	8.0	250				21	21	1	41
				10/4/2023	60	108	455	7.6	310	81	7.3		17	16	2	40
30S/10E-14B2	Sand Spit #3	LA3	D	3/15/2005	100	3600	30000	8	17000				1200	130		4300
000/102 1182	Deep	L/ (0		10/21/2015	ND	7140	29500	11	24700	10000	ND	530	2830	20	80	4040

Station ID	Well Name	Basin Plan	Aquifer	Date	НСО3	Total Hardness	Cond	рН	TDS	CI	NO3-N	SO4	Ca	Mg	K	Na
Station ID	well Name	Well ID	Zone	Date	mg/l	mg/l	µmhos/ cm		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
				12/20/2004	64	130	610	7	310	110	4.5	19	22	19	1.6	50
				11/20/2009				7.1	347	130		22	23		1.6	
				7/24/2014	40				240					10	1	32
				4/22/2015				7.3	320			16			2	45
				10/5/2015				7.6	270			7	12	11	1	34
				4/26/2016				7	300						2	
				10/12/2016			506		320			15.1	18			44
				4/10/2017	70				310							43
				10/12/2017	70		484	7	270						2	46
	GSWC		_	4/24/2018					300				18		1	43
30S/10E-24C1	Cabrillo	LA9	D	10/9/2018				6.9	280			17.2	21	20	2	50
				4/15/2019		112	488	7.1	310			15.6	17	17	2	45
				10/14/2019			0=4	0 = 4		ple (off-				0.5		40
				4/21/2020					370			28.4				
				10/7/2020					270				16			40
				4/6/2021	63				287	78			16			39
				10/8/2021	60				280			16		17	2	44
				4/18/2022	70				330				19			46
				10/19/2022	70			7.4	310						2	48
				4/11/2023					330						1	43
				10/10/2023	70	128	545	7.58	380	96	6.8	17.4	20	19	2	47

Station ID	Well Name	Basin Plan	Aquifer	Date	НСО3	Total Hardness	Cond	рН	TDS	CI	NO3-N	SO4	Ca	Mg	K	Na
Station ID	well Name	Well ID	Zone	Date	mg/l	mg/l	µmhos/ cm		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
				11/18/2004	250	270	790	7.5	410	73	ND	39	44	40	2.3	48
				11/19/2009				7.4	465	92		46	46		1.9	
				7/23/2014	290			7.6	460	91	ND		49	44	2	54
				4/21/2015			897	7.7	500				48			
				10/6/2015				7.4	490	91	ND	46	47	44	2	55
				4/20/2016			907	7.7	520	91	ND		49	45	2	54
				10/11/2016				4.9	490	93			44	41	2	52
				4/10/2017	300			7.3	480		ND		47	43		54
				10/4/2017	220			6.5	470	92			48			56
			_	4/10/2018				7.7	440	93			52	46	2	56
30S/11E-7Q3	LOCSD 8th St.	LA12	D	10/2/2018				7.3	470				46		1	53
				4/9/2019			844	7.5	480	94			48		2	53
				10/2/2019			877	8	530	91	ND		49		2	56
				4/16/2020			883	7.8	500				48		2	52
				10/5/2020			891	7.9	510				51	47	2	57
				4/5/2021	305		849	7.7	504	94			48			54
				10/6/2021	300			7.5	510	95			46		2	51
				4/13/2022	300			7.4 7.9	490	94 94			43 45		2	50 52
				10/4/2022	310			7.9	500	98			45			
				4/5/2023 10/11/2023	310 310		842 849	7.1	490 520	98			48	48	3 2	53

Station ID	Well Name	Basin Plan	Aquifer	Date	НСО3	Total Hardness	Cond	рН	TDS	CI	NO3-N	SO4	Ca	Mg	K	Na
Station ID	well maille	Well ID	Zone	Date	mg/l	mg/l	µmhos/ cm		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
				1/14/2005	150	150	440	7.5	290	34	2.2	11	24	22	1.4	
				11/20/2009	120				255				25			
				7/23/2014	150		500	7.6	270					24		_
				4/21/2015			481	7.6	270			13				28
				10/1/2015				7.4	290							28
				4/19/2016				6.9	290				26			29
				10/13/2016			521	7.3	290							29
				4/13/2017	150				300				26			29
				10/11/2017	150			7.7	260			14	26			29 29
000/445 4550	So. Bay Obs.		_	4/16/2018					310				25			29
30S/11E-17E8	Middle	LA22	D	10/10/2018				7.5	250			15	_		1	28
				4/10/2019				7.2	290						1	28
				10/9/2019				7.3	270			14.9				28
				4/14/2020				8	280						1	27
				10/6/2020			506	7.5	340				28		1	30 27
				4/8/2021	159				329						1	
				10/19/2021	170		480		310					27 27	1	29 29
				4/20/2022	160				320						1	
				10/17/2022	180			7.4 7.7	300			16.5		33	2	
				4/6/2023	200				300			_			1	26 28
				10/17/2023	170	169	465	7.0	290	45	6.1	13.7	25	26	2	_I ∠8

Station ID	Well Name	Basin Plan	Aquifer	Date	HCO3	Total Hardness	Cond	рН	TDS	CI	NO3-N	SO4	Ca	Mg	K	Na
Station ID	weii Name	Well ID	Zone	Date	mg/l	mg/l	µmhos/ cm		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
				Jan 2003	250		510	7.1	290	37	ND	21	41	25	1.3	35
				11/20/2009	230	220	638	7.3	357	41		30	35			37
				7/24/2014	280	232	646	7.7	370	37	0.5		37	34		41
				4/22/2015				7.4	360	43			36			42
				10/5/2015			614	7.2	370	38			35			41
				4/26/2016			629	7.1	360	39			35		2	40
				10/12/2016			631	7	370	40			34	33		40
				4/10/2017	280		624	7.2	380	39		26.7	35			40
				10/12/2017	260				320	41	_	_	37	36		43
	GSWC So.			4/24/2018				7.4	330				27	24		31
30S/11E-17N10	Bay #1	LA20	C,D,E	10/9/2018				7.2	340				42	41	3	
	- ,			4/15/2019					310			21.7	28	27	2	34
				10/14/2019			626	7.2	380			29	34	33		40
				4/21/2020					400			26.9	36			42
				10/7/2020			654	7.5	350	40		27	35			42
				4/6/2021	204	178		7.9	329	43			29	26		33
				10/7/2021	290			6.8	340	40		27.8		37	2	43
				4/18/2022	280			7.4	360	39		26.6			2	42
				10/19/2022	300			7.6	330			26.4	37	37	2	43
				4/11/2023					290	43 43			28 31	25 28		33 36
				10/10/2023	220	193	538	7.7	320	43	3	23.4	31	28		36

Station ID	Well Name	Basin Plan	Aquifer	Date	НСО3	Total Hardness	Cond	рН	TDS	CI	NO3-N	SO4	Ca	Mg	K	Na
Station iD	Well Name	Well ID	Zone	Date	mg/l	mg/l	µmhos/ cm		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
				1/19/2005	260	290	650	7.5	370			38	62	33	2.5	28
				11/20/2009	230		620	7.5	378			40		24	1.8	
				7/24/2014	290		647	7.5	380			34	56		2	27
				4/21/2015				7.7	400			39			2	
				10/19/2015				7.3	370			33	53			26
				4/20/2016				7.5	390				55		2	
				10/18/2016					370							
				4/12/2017	290			7.5	450				57	32	2	27
				10/10/2017	220		619	7.8	350			35.5			2	
000/445 40//0	10th St. Obs.	1.440	_	4/17/2018				7.3	390			39.9			2	
30S/11E-18K8	East (Deep)	LA18	E	10/10/2018				7.5	360			39.8				_
	(17			4/10/2019				7.6	380			37.4	52	28		25
				10/9/2019				7.9	390			40.5	52	30		_~
				4/14/2020				7.5	400				55		2	
				10/22/2020				7.5	370				51	29		26 27
				4/12/2021	298		621	7.6	389				54			
				10/19/2021	300		657	7.4	400				59			
				4/15/2022	290		638	8.3	420						2	25 29
				10/10/2022	310			8.0	400					33		
				4/6/2023	310		623	7.9	410				50	31	2	26 26
				10/17/2023	310	264	622	7.1	430	31	ND	37.7	53	32	2	26

Station ID	Well Name	Basin Plan	Aquifer	Date	НСО3	Total Hardness	Cond	рН	TDS	CI	NO3-N	SO4	Ca	Mg	K	Na
Station id	well Name	Well ID	Zone	Date	mg/l	mg/l	µmhos/ cm		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
				May 2002	250		550	6.9	320	37	0.2	26	31	32		39
				11/20/2009	180	160	539	7.2	307	36	1	27	27	24	1.3	32
				7/23/2014	220	190	546	7.7	300	32	1	20	30	28	1	35
				4/21/2015	190	108	504	7.6	270	38	1.6	20	17	16	1	27
				10/6/2015	50	62	248	7.2	190	31	5.9	3	10	9	ND	21
				4/20/2016	130	121	382	7.5	220	32	3.3	12	19	18	1	27
				10/11/2016	200	168	511	6.6	270	36	1.2		26	25	1	34
				4/10/2017	190	155	461	7.3	270	35	1.9		24	23	1	31
				10/9/2017	200	168	493	7.6	270	36	1.4	23.1	26	25	1	33
	LOCSD 10th			4/10/2018	50	75.2	256	7.7	150	35	6.5		12	11	ND	23
30S/11E-18K9	St.	LA32	C,D	10/2/2018	210	168	492	7.3	270	36	1.3	22	26	25	ND	33
	Oi.			4/9/2019	200	172	474	7.6	270	34		21.5	26	26	1	33
				10/2/2019	200	185	531	7.4	310	36	1.4		28	28	1	35
				4/16/2020	60	72.7	272	8.1	190	35	6	5.4	11	11	ND	20
				10/6/2020	60	68.6	246	8	180	30	4	4.9	11	10	ND	21
				4/5/2021	143	128	390	7.8	247	34	2.1	15.7	20	19	1	27
				10/6/2021	60	68.6	255	7.7	150	30	3.9	5.7	11	10	ND	20
				4/13/2022	70	66.1	262	7.6	150	30	3.8	5.2	10	10	ND	20
				10/6/2022	200	211	461	7.7	260	38	1.4	23.5	32	32	2	58
				4/5/2023	190	169	465	7.2	290	38	1.4	22.8	25	26	1	33
				10/10/2023	200	168	482	7.6	290	38	1.3		26	25	2	32
				4/15/2019	290	230	619	8.1	350	38	ND	27.4	33	36	2	41
				10/14/2019	300	225	628	7.2	370	37	ND	28.6	34	34	1	41
				4/21/2020	300	236	674	6.9	370	37	0.2	28.4	37	35	2	42
				10/7/2020	300	227	657	7.4	360	37	ND	28.2	35	34	2	43
30S/11E-18K	GSWC Los	LA39	D	4/6/2021	301	226	629	8.0	382	38	ND	25.8	34	34	2	40
303/11E-16K	Olivos #5	LASS	U	10/8/2021	300	253	638	7.4	360	37	ND	29.3	37	39	2	45
				4/18/2022	250	209	561	7.6	330	34	ND	17.8	31	32	2	34
				10/19/2022	310	236	617	7.6	330	37	ND	28	37	35	2	44
				4/11/2023	310	214	626	7.5	340	38	ND	30.1	33	32	1	40
				10/10/2023	310	245	632	7.4	370	37	ND	29.4	37	37	2	42

Station ID	Well Name	Basin Plan	Aquifer	Date	НСО3	Total Hardness	Cond	рН	TDS	CI	NO3-N	SO4	Ca	Mg	K	Na
Station ID	well Name	Well ID	Zone	Date	mg/l	mg/l	µmhos/ cm		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
			D,E	11/18/2004	220	330	880	7.3	420	120	ND	31	54	48	2.2	40
			₽,∟	11/19/2009	200	590	1460	7.2	890	360	0.4	39	94	86	2	44
				7/23/2014	250	293			390	90	0.4		48		2	40
				4/29/2015				7.4	230			10	13		ND	
				10/28/2015				7.4	420	104			46		ND	
				4/27/2016				7.3	450	93			43	38	2	43
				10/11/2016			694	7	380	91	1.7	25.5	36		1	35
				10/5/2017	180			7.6				27	50	44	2	40
				4/10/2018				7.3	420	100			52	44	2	40
000/445 401 0**	LOCSD	1.045		10/23/2018				7.7	440				48	41	1	38
30S/11E-18L2**	Palisades	LA15	_	4/9/2019			774	7.4	460	102			48	44	1	38
			D	11/14/2019	210			7.8	430			32.9	49	44	2	39
				4/16/2020				7.7	460				49	43		37
				10/5/2020	250			7.8	450			29.7	52	46	2	41
				4/6/2021	234	290	780	7.7	444	108	1	27.2	47	42	2	38
				10/6/2021	250	295	856	7.3	490	107	0.5	32.8	49	42	2	37
				4/13/2022	250	330	876	7.3	470	116	0.5	30.3	53	48	2	43
				10/4/2022	250	326	885	7.7	610	138	0.8	31.2	53	47	2	40
				4/11/2023	250	282	877	8.2	470	142	0.8	31.4	47	40	2	37
				10/9/2023	270	331	898	7.6	570	130	0.5	31.1	55	47	2	40

Station ID	Well Name	Basin Plan	Aquifer	Date	HCO3	Total Hardness	Cond	рН	TDS	CI	NO3-N	SO4	Ca	Mg	K	Na
Station iD	Well Maille	Well ID	Zone	Date	mg/l	mg/l	µmhos/ cm		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
30S/11E-18F2	LOCSD Ferrell	LA13	Г.	4/5/2023	190	132	668	8.3	310	77	ND	62.1	15	23	2	76
303/11E-10F2	LOCSD Fellell	LAIS	D	10/11/2023	280	168	656	7.7	400	50	ND	39.7	23	27	2	70

ND = Not Detected

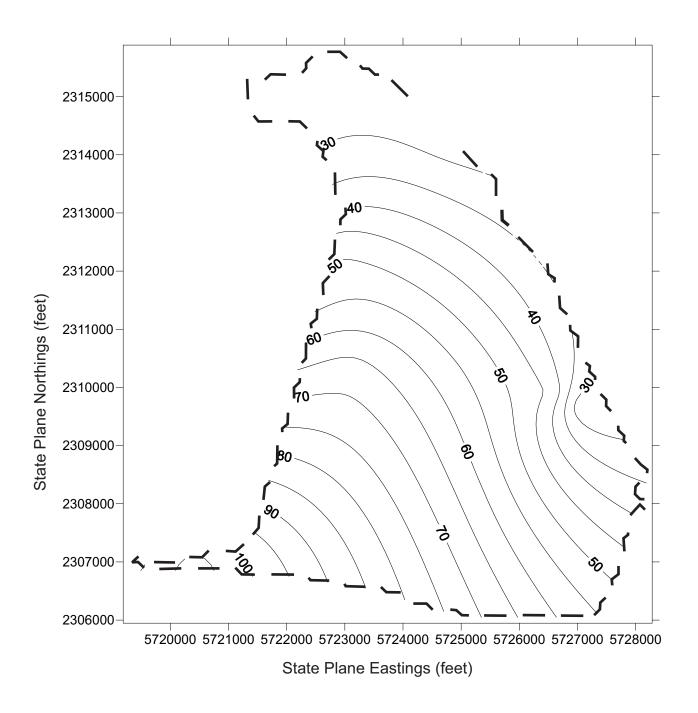
Chloride Metric Wells in Green (13J1 weighted x2); current chloride concentrations in red

*Chloride concentrations at 13J1 can vary seasonally by 100+ mg/l and are affected by well production and borehole leakage, so fluctuations are expected.

**Water from 18L2 affected by wellbore leakage/upper aquifer influence when inactive

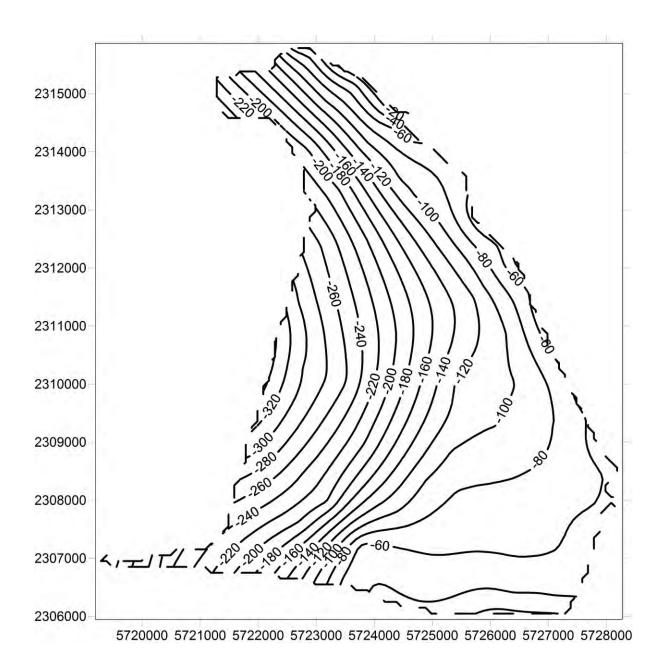
Legend and Detection Limits

Constituent	Description	Practical Quantitation Limit*
HCO3	Bicarbonate Alkalinity in mg/L CaCO3	10.0
Total Hardness	Total Hardness in mg/L CaCO3	
Cond	Electrical Conductance in μmhos/cm	1.0
рН	pH in pH units	
TDS	Total Dissolved Solids in mg/L	20.0
Cl	Chloride concentration in mg/L	1.0
NO3-N	Nitrate as Nitrogen concentration in mg/L	0.1
SO4	Sulfate concentration in mg/L	2.0
Ca	Calcium concentration in mg/L	1.0
Mg	Magnesium concentration in mg/L	1.0
K	Potassium concentration in mg/L	1.0
Na	Sodium concentration in mg/L	1.0

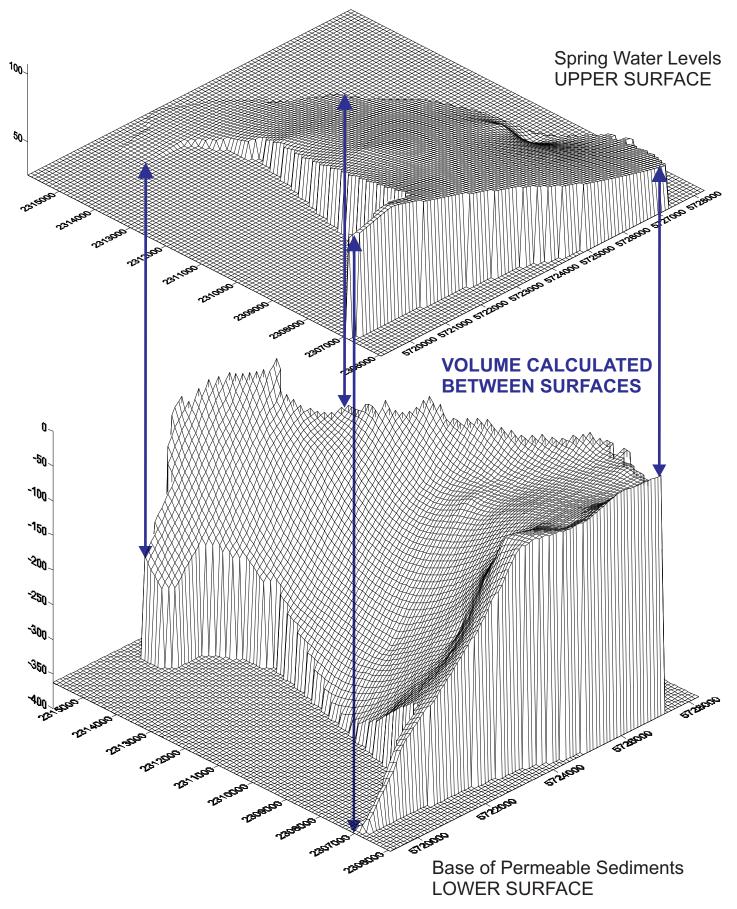

^{*}where dilution not required

*where dilution not required

APPENDIX J


Groundwater Storage Calculation Example

STEP 1: GRID AND TRIM WATER LEVEL CONTOURS


Spring 2023
Eastern Area Water Levels
Alluvial Aquifer and Lower Aquifer

STEP 2: GRID AND TRIM BASE OF PERMEABLE SEDIMENTS

Eastern Area
Base of Permeable Sediments

STEP 3: MATCH UPPER AND LOWER SURFACE GRIDS

STEP 4: VOLUME COMPUTATION

Grid Volume Computations

Mon Mar 25 15:40:46 2024

Upper Surface

Grid File Name: C:\Users\andre\Desktop\Projects\Los Osos BMC\2023\BMC 2023 Annual

Report\Working Data\Contouring and Storage\BLANKED FILES\EASTERN\UpperEasternSpringBlanked2023_2.grd Grid Size: 100 rows x 92 columns

X Minimum: 5719189 X Maximum: 5728284

X Spacing: 99.945054945055

Y Minimum: 2305947 Y Maximum: 2315886

Y Spacing: 100.39393939394

Z Minimum: 25.377507724864 Z Maximum: 107.1856417198

Lower Surface

Grid File Name: C:\Users\andre\Desktop\Projects\Los Osos BMC\2023\BMC 2023 Annual Report\Working Data\Contouring and Storage\BASE GEOMETRY\EASTERN\BOP Eastern blanked.grd

Grid Size: 100 rows x 92 columns

X Minimum: 5719189 X Maximum: 5728284

X Spacing: 99.945054945055

Y Minimum: 2305947 Y Maximum: 2315886

Y Spacing: 100.39393939394

Z Minimum: -362.32467224801 Z Maximum: 2.39586300134

STEP 5: CALCULATE GROUNDWATER IN STORAGE

Volumes

Z Scale Factor: 1

Total Volumes by:

Trapezoidal Rule: 8581383678.0825 Simpson's Rule: 8576971520.3353 Simpson's 3/8 Rule: 8573319181.73

Cut & Fill Volumes

Positive Volume [Cut]: 8581383678.0825

Negative Volume [Fill]: 0

Net Volume [Cut-Fill]: 8581383678.0825

Areas

Planar Areas

Positive Planar Area [Cut]: 41665677.518315

Negative Planar Area [Fill]:

Blanked Planar Area: 48729527.481685

Total Planar Area: 90395205

Surface Areas

Positive Surface Area [Cut]: 41785024.431853

Negative Surface Area [Fill]: 0

STORAGE CALCULATION

Positive Volume: 8,581,383,678.08 ft³ * 0.101 specific yield ÷ 43,560 ft³ per acre-foot = 19,897 acre-feet

WELLS USED FOR GROUNDWATER ELEVATION CONTOURS 2023 GROUNDWATER STORAGE CALCULATIONS

FIRST \	WATER	UPPER A	AQUIFER	LOWER	AQUIFER
SPRING	FALL	SPRING	FALL	SPRING	FALL
FW2	FW2	UA1	UA1	LA1	LA1
FW3	FW3	UA2	UA2	LA2	LA2
FW4	FW4	UA3	UA3	LA3	LA3
FW5	FW5	UA4	UA4	LA4	LA4
FW6	FW6	UA5	UA5	LA5	LA5
FW8	FW8	UA6	UA6	LA6	LA6
FW9	FW9	UA8	UA8	LA8	LA8
FW10	FW10	UA9	UA9	LA9	LA9
FW11	FW11	UA10	UA10	LA10	LA10
FW12	FW12	UA12	UA12	LA11	LA11
FW13	FW13	UA16	UA16	LA12	LA12
FW15	FW15	UA17	UA17	LA13	LA13
FW17	FW17	UA18	UA18	LA14	LA14
FW18	FW18	FW2	FW2	LA15	LA15
FW19	FW19	FW3	FW3	LA16	LA16
FW20	FW21	FW4	FW4	LA18	LA18
FW21	FW22	FW5	FW5	LA19	LA19
FW22	FW23	FW6	FW6	LA20	LA20
FW23	FW24	FW8	FW8	LA21	LA21
FW24	FW26	FW9	FW9	LA24	LA24
FW26	FW27	FW10	FW10	LA25	LA25
FW27	FW28	FW11	FW11	LA26	LA26
FW28	FW30	FW12	FW12	LA27	LA27
FW30	FW31	FW15	FW15	LA29	LA29
FW31	FW32	FW24	FW24	LA30	LA30
FW32	FW33	FW26	FW26	LA33	LA33
FW33	LA34	FW27	FW27	LA34	LA34
LA34	LA35	FW32	FW32	LA35	LA35
LA35	LA37	FW33	FW33	LA37	LA37
LA37	LA38	LA34	LA34	LA38	LA38
LA38		LA35	LA35	LA39	LA39
		LA37	LA37	LA41	LA41
		LA38	LA38	FW27	FW27

NOTE: Wells LA34, LA35, LA37, and LA38 represent the shallowest available water level data in the Eastern Area, and are included in the First Water and Upper Aquifer contour data sets for improved lateral control. Well FW27 is located where maximum recharge to lower aquifer from stream seepage likely occurs and provides control for all aquifers locally.

APPENDIX K

Construction of the Skyline Drive Monitoring Well Cluster

APPENDIX K

Skyline Drive Monitoring Well

Summary

The Skyline monitoring well was proposed as monitoring well cluster in the 2022 Annual Report to fill a data gap with respect to seawater intrusion in Lower Aquifer Zone D and Zone E. The wells were constructed in December of 2023.


Monitoring well LA42 (Zone E) was cased with 2.5-inch diameter Schedule 80 PVC to 486 feet depth, with the well screen positioned from 436-476 feet depth.

Monitoring well LA43 (Zone D) was cased with 2.5-inch diameter Schedule 80 PVC to 368 feet depth, with the well screen positioned from 328-368 feet depth.

Well documentation and results interpretation attached herein include the following:

- Well Location Figure
- Well Completion Reports
- Lithologic Log
- Geophysical log summaries with well construction and aquifer zone correlation

The Skyline monitoring wells will improve the delineation of seawater intrusion along the bay front and help to provide an alternative location to nearby LA10, which in not consistently representative of Lower Aquifer water quality due to Upper Aquifer Influence. LA42 and LA43 provide new monitoring locations in Lower Aquifer Zone D and Zone E, respectively (Figure K-1). The screened intervals are correlated to basin aquifers in Figure K-2, with additional geophysical logs shown in Figure K-3. Water quality will be sampled during the Spring 2024 groundwater monitoring event.

State of California

Well Completion Report Form DWR 188 Submitted 12/28/2023 WCR2023-013896

Owner's Well Num	ober 1-A LA42 Dat	te Work Began 12/01/	2023 Date Work Ended 12/06/2023							
Local Permit Ager	cy San Luis Obispo County Environmental He	alth Services								
Secondary Permit	Agency	Permit Number 2023-0	D51 Permit Date 10/11/2023							
Well Owner	(must remain confidential pursua	nt to Water Code	13752) Planned Use and Activity							
Name LOS OS	OS CSD,		Activity New Well							
Mailing Address	1055 MONTEREY STREET		Planned Use Monitoring							
City SAN LUIS OBISPO State CA Zip 93408										
	Well Location									
Address 0 EA	Address 0 EAST END OF SKYLINE ROAD APN COUNTY RIGHT OF WAY									
City LOS OSC	OS Zip 93402	County San Luis Obisp	Township 30 S							
Latitude 35	' <u></u>		79 W Range 10 E							
Deg.	- ——	eg. Min. Sec.	Section 13							
Dec. Lat. 35.31		20.843155	Baseline Meridian Mount Diablo							
			Ground Surface Elevation							
Vertical Datum	Horizontal Datum	WGS84	Elevation Accuracy Elevation Determination Method							
Location Accurac	y Location Determination Method		Elevation Determination Method							
	Borehole Information	V	Vater Level and Yield of Completed Well							
Orientation Ver	tical Specify	Depth to	first water (Feet below surface)							
Drilling Method	Direct Rotary Drilling Fluid Bentonite	Depth to	Static							
-	Ziming Fluid Zemerine	Water Le	vel (Feet) Date Measured							
Total Depth of Bo	ring 500 Feet	Estimated	``,							
Total Depth of Co	mpleted Well 486 Feet	Test Leng	gth (Hours) Total Drawdown (feet) be representative of a well's long term yield.							
	<u> </u>									
	Geol	ogic Log - Free F	orm							
Depth from Surface		Descript	tion							
Feet to Feet		Descript								
0 76	SAND									
76 80	GREY CLAY									
80 131	BROWN SAND									
131 138	BROWN CLAY									
138 144	SAND & GRAVELS									
144 168	BROWN CLAY									
168 178	SAND & GRAVELS									
178 203	BROWN SAND									
203 216	SAND & GRAVLES									
216 243	BROWN SAND									
243 250	GREY CLAY									
250 256	BROWN SAND									
256 264	BROWN SAND & GRAVELS									
264 275	GREY CLAY									

275	307	SAND & GRAVELS
307	319	GREY CLAY
319	369	SAND & GRAVELS
369	377	SANDY BROWN CLAY
377	449	SAND & GRAVEL WITH BROWN CLAY LAYERS
449	500	SAND & GRAVELS

	Casings											
Casing #	• i ·		Casing Type	Material	Casings Specificatons	Wall Thickness (inches)	Outside Diameter (inches)	Screen Type	Slot Size if any (inches)	Description		
1	0	56	Conductor or Fill Pipe	PVC	OD: 10.750 in. SDR: 21 Thickness: 0.511 in.	0.511	10.75					
2	0	436	Blank	PVC	OD: 2.875 in. SDR: SCH 80 Thickness: 0.276 in.	0.276	2.875					
2	436	476	Screen	PVC	OD: 2.875 in. SDR: SCH 80 Thickness: 0.276 in.	0.276	2.875	Saw Cut	0.02			
2	476	486	Blank	PVC	OD: 2.875 in. SDR: SCH 80 Thickness: 0.276 in.	0.276	2.875					

	Annular Material										
Depth from Surface Feet to Feet		Fill	Fill Type Details	Filter Pack Size	Description						
0	56	Cement	Portland Cement/Neat Cement								
0	396	Other Fill	See description.		GROUT						
396	416	Bentonite	High Solids		PELLETS						
416 486 Filter Pack Other Gra		Filter Pack	Other Gravel Pack		LAPIS 3						
486	500	Other Fill	See description.		NATIVE SOILS						

Other Observations:		

Borehole Specifications							
Depth Surf Feet to	ace	Borehole Diameter (inches)					
0	56	18					
56	500	8.75					

	Certification Statement									
٦	I, the undersigned, certify that this report is complete and accurate to the best of my knowledge and belief									
	Name	FILIPPONI-THO)MP	SON DRILLING	INC					
┥	Person, Firm or Corporation									
┥		P O BOX 845	АТ	ASCADERO	CA	93423				
J		Address		City	State	Zip				
	Cianad									
	Signed	electronic signature received	<u>'</u>	12/28/2023	43	432680				
	l	C-57 Licensed Water Well Contractor	\r	Date Signed	C 57 Lice	ense Number				

DWR Use Only											
CSG # State Well Number				er Site Code Local We					l Nu	mber	
			N							w	
La	titude Deç	g/Min/Sec			Longitu	de	Deg	/Min	/Sed	2	
TRS:											
APN:											

State of California

Well Completion Report Form DWR 188 Submitted 12/28/2023 WCR2023-013897

					0.0001					
Owner's V	Vell Numb	er 2-B LA43	3	Date Work Bega	n 12/07/2023	Date Work Ended	12/11/2023			
Local Perr	mit Agenc	y San Luis Obispo C	ounty Environm	ental Health Services						
Secondary	y Permit A	gency		Permit Numb	er 2023-052	Permit Date	10/11/2023			
Wall C	wner (must remain co	nfidential n	ursuant to Wat	er Code 13752)	Planned Use	and Activity			
	LOS OSO		indential p	Jui Suarit to Wat	ei Code 13/32)		and Activity			
Mailing A		2122 9TH STREET				Activity New Well				
Walling A	adicss	STE. 110				Planned Use Monitoring	ng			
City LO	s osos	STE. 110		State CA	Zip 93402	.				
				Well Lo	cation					
Address	0 EAS	Γ END OF SKYLINE RO	DAD		Α	PN COUNTY RIGHT OF V	VAY			
City L	os osos	3	Zip 93402	2 County Sar	n Luis Obispo T	ownship 30 S				
Latitude	35	18 56.8944	N Longit	rude -120 50	35.3507 W	Range 10 E				
	Deg.	Min. Sec.	_	Deg. Min.	Sec	Section 13				
Dec. Lat.	35.3158	304	Dec. L	-		Saseline Meridian Mount Dia	DIO			
Vertical D			Horizontal	<u> </u>		Ground Surface Elevation Elevation Accuracy				
Location	_		Location Detern			Elevation Determination Method				
Location	rocuracy		Method							
	Borehole Information Water Level and Yield of Completed Well									
Orientatio	n Verti	cal		Specify	Depth to first water	(Feet be	elow surface)			
Drilling M	ethod D	Direct Rotary	 Drilling Fluid E	Bentonite	Depth to Static					
					Water Level	(Feet) Date Mea				
Total Dep	th of Borii	ng 370	F	eet	Estimated Yield*	(GPM) Test Type				
Total Dep	oth of Com	pleted Well 360	F	eet	Test Length	(Hours) Total Dra				
						entative of a well's long term yie	au.			
				Geologic Log	- Free Form					
Depth Surfa					Description					
Feet to					Description					
0	62	SAND								
62	73	SANDY BROWN CLAY	′							
73	127	BROWN SAND								
127	138	BROWN CLAY								
138	144	SAND & GRAVEL								
144	168	BROWN CLAY								
168	178	SAND & GRAVEL								
178	206	BROWN SAND								
206	216	SAND & GRAVELS								
216	243	BROWN SAND								
243	264	GREY CLAY								
264	275	SAND & GRAVELS								
275	278	GREY CLAY								
278	293	SAND & GRAVELS								

293	314	GREY CLAY
314	370	SAND & GRAVEL

	Casings											
Casing #		m Surface o Feet	Casing Type	Material	Casings Specificatons	Wall Thickness (inches)	Outside Diameter (inches)	Screen Type	Slot Size if any (inches)	Description		
1	0	56	Conductor or Fill Pipe	PVC	OD: 10.750 in. SDR: 21 Thickness: 0.511 in.	0.511	10.75					
2	0	320	Blank	PVC	OD: 2.875 in. SDR: SCH 80 Thickness: 0.276 in.	0.276	2.875					
2	320	360	Screen	PVC	OD: 2.875 in. SDR: SCH 80 Thickness: 0.276 in.	0.276	2.875	Saw Cut	0.02			

	Annular Material						
Depth from Surface Feet to Feet		Fill	Fill Type Details	Filter Pack Size	Description		
0	56	Cement	Portland Cement/Neat Cement				
0	290	Other Fill	See description.		GROUT		
290	310	Bentonite	High Solids		PELLETS		
310	370	Other Fill	See description.		LAPIS 3		

Other Observations:

Borehole Specifications							
	from face o Feet	Borehole Diameter (inches)					
0	56	18					
56 370		8.75					

Certification Statement					
I, the under	I, the undersigned, certify that this report is complete and accurate to the best of my knowledge and belief				
Name	e FILIPPONI-THOMPSON DRILLING INC				
	Person, Firm or Corporation				
	P O BOX 845	ATASCADERO	CA	93423	
	Address	City	State	Zip	
Signed	electronic signature received 12/28/2023 432680 C-57 Licensed Water Well Contractor Date Signed C-57 License Nu				

DWR Use Only											
CSG#	State Well Number		Site Code			Local Well Number					
			N								w
La	titude De	g/Min/Sec			Lo	ongit	ude	Deg	/Min	/Se	С
TRS:											
APN:											

Skyline Avenue Groundwater Monitoring Well Los Osos Community Services District

Date: 12/1/23 to 12/4/23

Location: East end of Skyline Drive Elevation: 48 feet above sea level (topo)

Geologist: I. Pitsillides

Drilling company: Filipponi & Thompson Drilling, Inc.

Drilling method: Mud Rotary

Conductor hole diameter: 18 inches to 56 feet below surface

Pilot Hole diameter: 9 inches

Total depth: 500 feet

Lithologic Log

Depth to top and bottom in feet

<u>Top</u>	<u>Bottom</u>	<u>Description</u>
0	40	Sand ; dark yellowish brown; very fine to fine sand, well sorted, subangular to subrounded, orange, clear some black grains.
40	50	Gravel and Sand ; dark yellowish brown; very fine to very coarse sand, poorly sorted, subangular to subrounded, orange, clear some black grains; fine gravel, well sorted, orange, clear some black.
50	76	Clayey sand, some gravel ; dark yellowish brown; very fine to very coarse sand, poorly sorted, subangular to subrounded, orange, clear some black grains; soft clay; fine gravel, well sorted, orange, clear some black.
76	90	Sand, with clay ; yellowish brown; very fine to very coarse sand, poorly sorted, subangular to subrounded, orange, clear some black grains; soft clay.
90	125	Sand ; dark yellowish brown; very fine to fine sand, well sorted, subangular to subrounded, orange, clear some black grains.
125	135	Clay, with sand ; brown; hard clay; very fine to medium sand, poorly sorted, subangular to subrounded, black, clear some orange grains.
135	145	Gravel, with clay, some sand ; dark yellowish brown; fine to medium gravel, moderately sorted, subangular to subrounded, chert, quartz; hard clay; fine to very coarse sand, poorly sorted, subangular to subrounded, black, clear some orange grains.
145	166	Clay, with sand; brown; hard clay; very fine to medium sand, poorly sorted, subangular to subrounded, black, clear some orange grains.
166	238	Sand ; dark yellowish brown; medium to coarse sand, moderately sorted, subangular to well rounded, orange, clear some black grains, locally interbedded clay.
238	260	Clayey sand ; dark yellowish brown; medium to coarse sand, moderately sorted, subangular to well rounded, orange, clear some black grains; soft to firm clay.
260	275	Clay, with sand ; very dark grayish brown; soft to firm clay; very fine to very coarse sand, poorly sorted, subangular to rounded, green, orange, black, and red grains.

Lithologic Log (Continued)

Top	Bottom	<u>Description</u>
275	300	Sand, with gravel, some clay; dark yellowish brown; very fine to very coarse sand, poorly sorted, subangular to rounded, green, orange, black, and red grains; fine gravel, well sorted, subangular to subrounded, gray quartz, lithic, and chert;
300	314	soft to firm clay. Clay, some sand ; very dark grayish brown; soft to firm clay; fine to very coarse sand, poorly sorted, subangular to rounded, green, orange, black, and red grains.
314	345	Sand; dark yellowish brown; very fine to fine sand, well sorted, subangular to subrounded, orange, clear some black grains.
345	368	Sand with gravel ; dark yellowish brown; very fine to fine sand, well sorted, subangular to subrounded, orange, clear some black grains, fine gravel, well sorted, subangular to subrounded, gray quartz, lithic, and chert.
368	380	Sand and clay; dark yellowish brown; very fine to fine sand, well sorted, subangular to subrounded, orange, clear some black grains; firm clay.
380	389	Sand with clay; dark yellowish brown; very fine to fine sand, well sorted, subangular to subrounded, orange, clear some black grains; firm clay.
389	405	Sand with gravel ; dark yellowish brown; very fine to fine sand, well sorted, subangular to subrounded, orange, clear some black grains, fine gravel, well sorted, subangular to subrounded, gray quartz, lithic, and chert.
405	419	Sand with clay; dark yellowish brown; very fine to fine sand, well sorted, subangular to subrounded, orange, clear some black grains; firm clay.
419	500	Sand with gravel ; yellowish brown; very fine to very coarse, poorly sorted, subangular to rounded, green, orange, black, and red grains; fine gravel, well sorted, subangular to subrounded, gray quartz, lithic, and chert.

Skyline Monitoring Wells

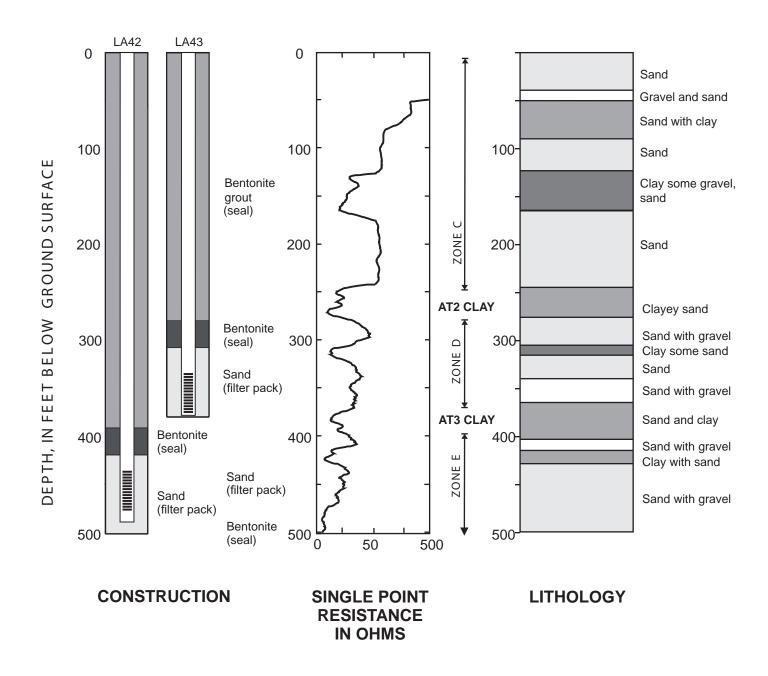


Figure K2 Skyline Aquifer Zone Correlation Los Osos Groundwater Basin 2023 Annual Report

Cleath-Harris Geologists

Skyline Monitoring Well

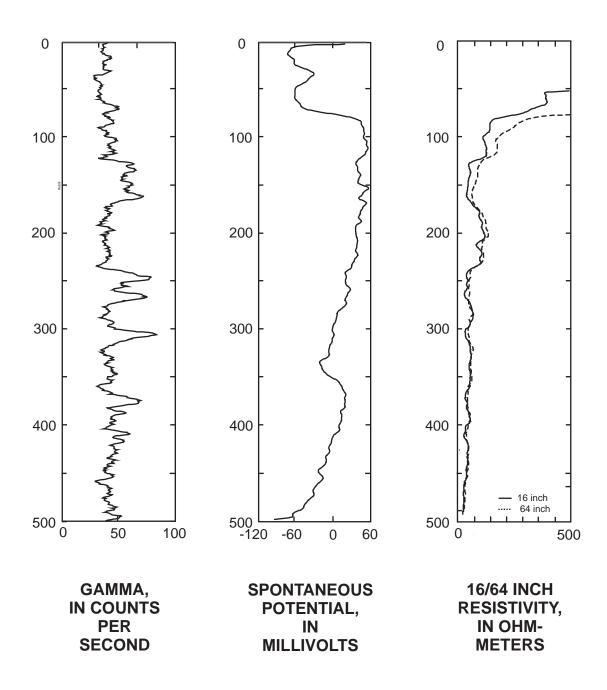


Figure K3 Skyline Monitoring Well Geophysics Los Osos Groundwater Basin 2023 Annual Report

Cleath-Harris Geologists